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Abstract 
 Interpreting group differences observed in aggregated data is a practice that must 
be done with enormous care. Often the truth underlying such data is quite different than a 
naïve first look would indicate. The confusions that can arise are so perplexing that some of 
the more frequently occurring ones have been dubbed paradoxes. In this paper we describe 
three of the best known of these paradoxes --Simpson’s Paradox, Kelley’s Paradox, and 
Lord’s Paradox -- and illustrate them in a single data set. The data set contains the score 
distributions, separated by race, on the biological sciences component of the Medical 
College Admission Test (MCAT) and Step 1 of the United States Medical Licensing 
Examination™ (USMLE). Our goal in examining these data was to move toward a greater 
understanding of race differences in admissions policies in medical schools. As we 
demonstrate, the path toward this goal is hindered by differences in the score distributions 
which gives rise to these three paradoxes. The ease with which we were able to illustrate all 
of these paradoxes within a single data set is indicative of how wide spread they are likely 
to be in practice.  
 

                                                 
1 We are grateful to the Association of American Medical Colleges for allowing us to use 
their MCAT data. More specifically we would like to thank Ellen Julian for her help in 
providing us with the information we required. In addition, this entire project was prompted 
by Don Melnick, who not only suggested that we do it but who has supported our inquiry. We 
are not unaware of the sensitive nature of some of the questions we are asking and fully 
appreciate Don’s support and helpful comments on an earlier draft of this paper. David 
Swanson and Douglas Ripkey generously provided us with a file of the USMLE results paired 
with MCAT scores; obviously a key element in this investigation. An earlier version of this 
paper was read and commented on by our colleagues Ron Nungester and Brian Clauser; we 
thank them for helping us excise errors and fuzzy thinking. This research was paid for by 
NBME and we thank our employer for providing such fascinating opportunities. Of course, 
the opinions expressed here are ours, as are any errors we may have made along the way. 
This work is collaborative in every respect and the order of authorship is random. 
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Three Statistical Paradoxes in the Interpretation of Group Differences:  

Illustrated with Medical School Admission and Licensing Data 
 
 

"To count is modern practice,  
the ancient method was to guess" 

Samuel Johnson  
 

“Evidence may not buy happiness, 
but it sure does steady the nerves.” 

Paraphrasing Satchel Paige’s  
comment about money, 

1. Introduction 

 Modern policy decisions involving group differences are both based on, 
and evaluated by, empirical evidence. But the understanding and 
interpretation of the data that comprise such evidence must be done 
carefully, for many traps await the unwary. In this essay we explore three 
statistical paradoxes that can potentially mislead us and illustrate these 
paradoxes with data used in the admission of candidates to medical school, 
and one measure of the success of those admissions.  

The first is known as Simpson’s Paradox (Yule, 1904) and appears when 
we look at the aggregate medical school application rates by ethnicity. The 
second is Kelley’s Paradox (Wainer, 2000), which shows its subtle effect 
when we examine the success rates of minority medical students on Step 1 
of the U.S. Medical Licensing Exam (USMLE-1). And, finally, the third 
paradox, which was first described by Lord (1967), emerges when we try to 
estimate the effect size of medical school training on students.  

 The balance of this essay is laid out as follows: in section 2 we 
describe the data that forms the basis of our investigation and provide some 
summarizations; in section 3 we describe Simpson’s Paradox and demonstrate 
its existence within our data and show how to ameliorate its effects through 
the method of standardization; in section 4 we describe Kelley’s Paradox and 
use our data to illustrate its existence; in section 5 we demonstrate Lord’s 
paradox and describe how its puzzling result can be understood by 
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embedding the analysis within Rubin’s model for causal inference. We 
conclude in section 6 with a discussion of these findings. 

2. The data 
  There are many steps on the path toward becoming a physician. 
Two important ones that occur early on are tests. The first test, the 
Medical College Admission Test (MCAT), is usually taken during the junior or 
senior year of college and is one important element in gaining admission to 
medical school. The second test is Step 1 of the United States Medical 
Licensing Exam  (USMLE). Step 1 is the first of a three-part exam a 
physician must pass to become licensed in the United States. This test is 
usually taken after the second year of medical school and measures the 
extent to which an examinee understands and can apply important concepts 
of the basic biomedical sciences. For the purposes of this investigation we 
examined the performance of all black and white examinees who’s most 
recent MCAT was taken during the three-year period between 1993 and 
1995.  Two samples of examinees testing during this time were used in the 
analyses. The first sample of approximately 83,000 scores comprises all 
black and white examinees whose most recent MCAT was taken during this 
time. This sample includes all examinees rather than being limited to only 
those applying to medical school. Additionally, because the sample reflects 
performance of examinees who had taken the MCAT after repeated 
attempts, the initial scores from low scoring examinees who repeated the 
examination to improve their performance were not included. This makes 
these average scores somewhat higher than those reported elsewhere 
(http://www.aamc.org/students/mcat/examineedata/appmat.htm).  

 The funnel of medical school matriculation continued with about 
48,000 (58%) of those who took the MCAT actually applying to medical 
school; of these about 24,000 (51%) were actually accepted. And finally, 
approximately 22,000 (89%) of the candidates who were accepted to 
allopathic medical schools, sat for Step 1 three years after their last MCAT 
attempt. By limiting our sample to those who entered medical school the year 
after taking the MCAT and took Step 1 two years later, we have excluded 
those who progressed through these steps in less typical amounts of time.  
But this seems like a plausible way to begin, and the conclusions we reach 
using this assumption should not be very far from the truth. 
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 In Table 1 we present the distributions of MCAT-Biological Sciences2 
scores for two racial groups along with selected conditional probabilities. 
The first column in the upper portion of table 1 shows the MCAT scores; we 
grouped some adjacent extreme score categories together because the 
sample sizes in the separate categories were too small in one or the other of 
the two groups to allow reliable inferences. The first section of the table 
shows the distributions of MCAT scores by race for black and white 
candidates whose most recent attempt was between 1993 and 1995. The 
second and third sections present the number of examinees from each group 
who applied to allopathic medical schools the following year and the 
respective acceptance rates. The final section shows the distribution of 
MCAT scores among those in our sample who matriculated to medical school 
and took Step 1 of the USMLE three years after their last MCAT attempt.     

------------------------------- 
Table 1:  See Last Page 

------------------------------- 

 The bottom portion of Table 1 presents selected conditional 
probabilities at each level of MCAT score that were derived from the 
frequencies on the top portion in the indicated fashion.  

 For the purposes of this discussion there are three important 
characteristics of Table 1: (i) the higher the MCAT score the greater the 
likelihood of applying to medical school, being selected, and eventually taking 
Step 1, (ii) at every MCAT score level the proportion of black MCAT takers 
taking Step 1 is higher than for white applicants, and (iii) despite this, the 
Step 1 rates for whites overall was higher than for blacks. If we have not 
made any errors in our calculations how do we account for this remarkable 
result? Are black students sitting for the licensing exam with greater 
likelihood than whites? Or with lesser? This is an example of Simpson’s 
Paradox and in the next section we discuss how it occurs and show how we 
can ameliorate its effects. 

                                                 
2 MCAT is a test that consists of four parts – Verbal Reasoning, Physical Sciences, Biological 
Sciences and a Writing Sample. The Biological Sciences score is the one that correlates 
most highly with subsequent performance on Step 1 of the USMLE, and so we used it as the 
stratifying variable throughout our study. None of our conclusions would be changed if we 
used an amalgam of all parts of the test, but the interpretations could get more complex. 
Therefore henceforth when we use the term “MCAT” we mean “MCAT Biological Sciences.” 
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3. Simpson’s Paradox 

 The seeming anomaly in Table 1 is not rare. It shows up frequently 
when data are aggregated. Indeed we see it also in the probabilities of 
applying to medical school. Let us examine a few other examples to help us 
understand both how it occurs and what we ought to do to allow us to make 
sensible inferences from such results. 
 
 On September 2, 1998 the New York Times reported evidence of high 
school grade inflation. They showed that a greater proportion of high school 
students were getting top grades while at the same time their SAT-Math 
scores had declined (see Table 2). Indeed, when we look at their table, the 
data seem to support this claim; at every grade level SAT scores have 
declined by 2 to 4 points over the decade of interest. Yet the article also 
reported that over the same time period (1988-1998) SAT-Math scores had 
in fact gone up by ten points.  

Table 2 

A Decade of High School Grades and SAT Scores:  
Are Students Getting Better or Worse? 

Percentage of students     
Grade  getting Grades  Average SAT Math Scores 
Average 1988 1998  1988 1998 Change 

A+ 4% 7%  632 629 -3 
A 11% 15%  586 582 -4 
A- 13% 16%  556 554 -2 
B 53% 48%  490 487 -3 
C 19% 14%  431 428 -3 

 Overall Average 504 514 10 
  From NY Times September 2, 1998 

 How can the average SAT score increase by 10 points from 1988 to 
1998, while at the same time decrease at every grade level? The key is the 
change in the percentages of children receiving each of the grades. Thus, 
although it is true that SAT-Math scores declined from 632 to 629 for A+ 
students, there are nearly twice as many A+ students in 1998. Thus in 
calculating the average score we weight the 629 by 7% in 1998 rather than 
by only 4%. The calculation of the average SAT score in a year requires both 
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high school grades and SAT scores for students with those grades. As we 
will demonstrate shortly, we can make the anomaly disappear by holding the 
proportional mix fixed across the two groups.  

As a third example, consider the results from the National 
Assessment of Educational Progress shown in Table 3.  We see that 8th 
grade students in Nebraska scored 6 points higher in mathematics than 
their counterparts in New Jersey. Yet we also see that both white and black 
students do better in New Jersey. Indeed, all other students do better in 
New Jersey as well. How is this possible? Once again it is an example of 
Simpson’s Paradox. Because a much greater percentage of Nebraska’s 8th 
grade students (87%) are from the higher scoring white population than in 
New Jersey (66%), their scores contribute more to the total.  

NAEP 1992 8th Grade Math Scores 
    Other   
 State White Black Non White  Standardized 

Nebraska 277 281 236 259  271 
New Jersey 271 283 242 260  273 

   Proportion of population  
Nebraska  87% 5% 8%   

New Jersey  66% 15% 19%   
Nation  69% 16% 15%   

Table 3 
 Given these results, we could ask, “Is ranking states on such an overall 
score sensible?” It depends on the question that these scores are being 
used to answer. If the question is something like “I want to open a business. 
In which state will I find a higher proportion of high-scoring math students 
to hire?” this unadjusted score is sensible. If, however, the question of 
interest is “I want to enroll my children in school. In which state are they 
likely to do better in math?” a different answer is required. If your children 
have a race (it doesn’t matter what race), they are likely to do better in New 
Jersey. If questions of this latter type are the ones that are asked more 
frequently, it makes sense to adjust the total to reflect the correct answer. 
One way to do this is through the method of standardization, in which we 
calculate what each state’s score would be if it were based upon a common 
demographic mixture. In this instance one sensible mixture to use is that of 
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the nation overall. Thus, after standardization the result obtained is the 
score we would expect each state to have if it had the same demographic 
mix as the nation.  To create the standardized score for New Jersey we 
multiple the average score for each subgroup by their respective 
percentages in the nation, e.g. (283 x 0.69) + (242 x 0.16) + (260 x 0.15) = 
273. Because New Jersey’s demographic mix is not very different from the 
national mix, it’s score is not affected much (273 instead of 271), whereas 
because of Nebraska’s largely white population its score shrinks 
substantially (271 instead of 277).   

 Simpson’s Paradox is illuminated through a clever graphic developed by 
Jeon, Chung & Bae (1987) (and independently reinvented by Baker & Kramer, 
2001). In figure 1 the solid line represents what Nebraska’s average score 
would be with any proportion of white students. The solid point at “87% 
white” shows what the score was with the actual percentage. Similarly, the 
dashed line shows what New Jersey’s average score would be for any 
percentage of whites, with the unshaded point showing the actual 
percentage. We can readily see how Nebraska’s average point is higher than 
New Jersey’s. The unshaded rectangle represents what both states’ 
averages would be with a hypothetical population of 69% white – the 
standardization mix. This plot shows that what particular mixture is chosen 
for standardization is irrelevant to the two state’s relative positions, since 
the two states’ lines are parallel. 
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Figure 1. A graph developed by Jeon, Chung & Bae (1987) that illuminates the 
conditions for Simpson’s Paradox as well as how standardization ameliorates 

it. 

 The use of standardization is not limited to comparing different 
states with one another. Indeed it may be even more useful comparing a 
state with itself over time. If there is a change in educational policy (e.g. 
per pupil expenditure) standardization to the demographic structure of the 
state at some fixed point in time allows us to estimate the effect of the 
policy change uncontaminated by demographic shifts. 

 Now we can return to the data about MCAT examinees in Table 1 with 
greater understanding. Why is it that the overall rate for taking Step 1 is 
lower for blacks than for white examinees, when we see that the rate is 
higher for blacks (often markedly higher) at each MCAT score level? The 
overall rate of 23% for black students is caused by a combination of two 
factors: policy and performance. For many policy purposes it would be well if 
we could disentangle these effects. As demonstrated in the prior example, 
one path toward clarity lies in standardization. If we wish to compare the 
rates for black and white students that current policy generates we must 
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rid the summary of the effects of differential performance and estimate 
standardized rates.  Standardized rates can be obtained by multiplying the 
Step 1 rates of each stratum of both black and white students by the score 
distribution of white students.  Multiplying the two columns of Step 1 rates 
in table 4 by the score distribution of whites (in bold) yields the two final 
columns, which when summed are the standardized rates; standardized to 
the white score distribution. Of course the white summary stays the same 
27%, but the standardized Step 1 rate for black students is 41%. We can 
use this information to answer to the question: 

If black students scored the same on the MCAT as white 
students what proportion would go on to take Step 1? 

Comparing the total Step 1 rates for blacks and whites after 
standardization reveals that if black and white candidates performed equally 
well on the MCAT, blacks would take Step 1 at a rate 54% higher than 
whites.  The standardization process also allows for another comparison of 
interest. The difference between the standardized rate of 41% for blacks 
and the actual rate of 23% provides us with the effect of MCAT 
performance on Step 1 rates of black students. This occurs because white 
students are more heavily concentrated at high MCAT scores, which have a 
higher rate of taking Step 1. Standardization tells us that if black students 
had that same MCAT distribution their rate of taking Step 1 would almost 
double.   

Table 4.  Distributions of Step 1 rates by ethnicity with standardized totals 
     Standardized 
 Step 1 Rates Percentage of Step 1 Rates 

MCAT Score White Black Whites Blacks Whites Blacks 
3 or less 0.1% 0.5% 1.6% 15.0% 0.0% 0.0%

4 0.5% 3.2% 2.8% 14.0% 0.0% 0.1%
5 1.0% 9.5% 4.8% 14.0% 0.0% 0.5%
6 2.6% 20.2% 7.1% 14.6% 0.2% 1.4%
7 8.5% 31.0% 9.4% 12.5% 0.8% 2.9%
8 18.1% 43.5% 16.1% 14.2% 2.9% 7.0%
9 29.8% 48.4% 18.1% 8.1% 5.4% 8.8%

10 or more 43.0% 50.6% 40.1% 7.6% 17.2% 20.3%
Total 26.6% 22.6%    26.6% 41.0%
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4. Kelley’s Paradox 

 We now turn to a second statistical paradox that appears in the same 
data set.  The score distributions of the two ethnic groups under 
consideration are shown in Figure 2. The score distributions are about one 
standard deviation apart. This result matches rather closely what is seen in 
most other standardized tests (e.g. SAT, NAEP, LSAT, GRE)3. 
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Figure 2. MCAT score distributions by race aggregated for all examinees 

taking the exam for the last time between 1993 and 1995. 

The distribution of MCAT scores in the medical school population is shown as 
Figure 3. The means of these distributions are a little closer together, but 
because the individuals that make up these distributions are highly selected, 
they have somewhat smaller standard deviations (they are leptokurtic). The 
difference between them, in standard deviation units, is 18% larger. 

                                                 
3 For further general documentation see Bowen & Bok (1998). Details on NAEP are in 
Johnson & Zwick (1988); on SAT see 
www.collegeboard.com/prod_downloads/about/news_info/cbsenior/yr2003/pdf/table_3c.pdf;  
on GRE “Sex, race, ethnicity and performance on the GRE General Test: 2003-2004. “ 
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Figure 3. MCAT score distributions by race aggregated for all medical 

students who took the USMLE Step 1 from 1995 through 1998. 

 As shown by the data that make up Table 1, a black candidate with the 
same MCAT score as a white candidate has a greater likelihood of admission 
to medical school. Often much greater; at MCAT scores of 5 or 6 a black 
candidate’s probability of admission is about twelve times that of a white 
candidate. There are many justifications behind a policy that boosts the 
chances of being selected for medical school for black applicants. One of 
these is the expectation that students from less privileged social 
backgrounds who do well must be very talented indeed and hence will do 
better still when given the opportunity. This point of view was more fully 
expressed in the August 31, 1999 issue of the Wall Street Journal. In it an 
article appeared about a research project done under the auspices of the 
Educational Testing Service called “Strivers”. The goal of “Strivers” was to 
aid colleges in identifying applicants (usually minority applicants) who have a 
better chance of succeeding in college than their test scores and high school 
grades might otherwise suggest. The basic idea was to predict a student’s 
SAT score from a set of background variables (e.g., ethnicity, SES, mother’s 
education, etc.) and characterize those students who do much better than 
their predicted value as “Strivers”. These students might then become 
special targets for college admission’s officers. In the newspaper interview 
the project’s director, Anthony Carnevale said, “ When you look at a Striver 
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who gets a score of 1000, you’re looking at someone who really performs at 
1200.” Harvard emeritus professor Nathan Glazer, in an article on Strivers 
in the September 27, 1999 New Republic indicated that he shares this point 
of view when he said (p. 28) “It stands to reason that a student from a 
materially and educationally impoverished environment who does fairly well 
on the SAT and better than other students who come from a similar 
environment is probably stronger than the unadjusted score indicates.” 

 But before this intuitively appealing idea can be accepted it has a 
rather high theoretical hurdle to clear. To understand this hurdle and be 
able to attach its relevance to medical licensing, it is worthwhile to drop 
back a century and trace the origins of the fundamental issues underlying 
this proposal. 

 When we try to predict one event from another we always find that 
the variation in the prediction is smaller than that found in the predictor. In 
1889 Francis Galton pointed out that this always occurred whenever 
measurements were taken with imperfect precision and was what he called 
“regression toward the mean.” This effect is seen in some historical father-
child height data shown in Figure 4. Note how the father’s heights vary over 
a 44-centimeter range (from 152 to 196 centimeters) while the prediction of 
their children’s heights, shown by the dark dashed line, varies over only a 
30-centimeter range (from 158 to 188 centimeters). What this means is that 
fathers that are especially tall are predicted to sire children that are tall 
but not as tall, and fathers who are short are predicted to have children 
that are short but not as short as their fathers. In this instance it is the 
imperfect relationship between father’s and son’s heights, rather than the 
imperfect precision of measurement, that gives rise to the regression 
effect. 



1/29/2004 13

200190180170160150
150

160

170

180

190

200

There is less variation in the prediction
than in the predictor

Father's height (cm)

Ch
ild

's
 H

ei
gh

t 
(c

m
)

Figure 4

44 centimeters

30 
centimeters

Figure 4. The height of a child is roughly predictable from the height of its 
parent. Yet the distance between the shortest and tallest adults is greater 

than distance between the predicted statures of the most extreme children. 

 While regression has been well understood by mathematical 
statisticians for more than a century, the terminology among appliers of 
statistical methods suggests that they either thought of it as a description 
of a statistical method or as only applying to biological processes. In 1924, 
Frederick C. Mills, the economic statistician, wrote “the original meaning has 
no significance in most of its applications,” (p. 394).  

 Stephen Stigler in a 1997 article (p. 112) pointed out that this was “a 
trap waiting for the unwary, who were legion.” The trap has been sprung 



1/29/2004 14

many times. One spectacular instance of a statistician getting caught was “in 
1933, when a Northwestern University professor named Horace Secrist 
unwittingly wrote a whole book on the subject, The Triumph of Mediocrity in 
Business. In over 200 charts and tables, Secrist ‘demonstrated’ what he 
took to be an important economic phenomenon, one that likely lay at the root 
of the great depression: a tendency for firms to grow more mediocre over 
time.” Secrist showed that the firms with the highest earnings a decade 
earlier were currently performing only a little better than average; 
moreover, a collection of the more poorly performing firms had improved to 
only slightly below average. These results formed the evidence supporting 
the title of the book. Harold Hotelling, in a devastating review published the 
same year, pointed out that the seeming convergence Secrist obtained was a 
“statistical fallacy, resulting from the method of grouping.” He concluded 
that Secrist’s results “prove nothing more than that the ratios in question 
have a tendency to wander about.” He then demonstrated that the firms 
that had the highest earnings now were, on average, only slightly above 
average ten years earlier. And firms with the lowest earnings now were only 
slightly worse, on average tens years previous. Thus showing the reverse of 
what Secrist claimed. Hotelling’s argument was not original with him. Galton 
not only showed that tall fathers had sons who were, on average shorter 
than they were, but he also showed that very tall sons had fathers who were 
shorter than they were.  

 It is remarkable, especially considering how old and well-known 
regression effects are, how often these effects are mistaken for something 
substantive. Although Secrist himself was a professor of statistics, Willford 
I. King, who, in 1934 wrote a glowing review of Secrist’s book, was president 
of the American Statistical Association! This error was repeated in a book 
by W. F. Sharpe, a Nobel laureate in economics (p. 430) who ascribed the 
same regression effect Secrist described to economic forces. His 
explanation of the convergence, between 1966 and 1980, of the most 
profitable and least profitable companies was that “ultimately economic 
forces will force the convergence of profitability and growth rates of 
different firms.” This continuing misunderstanding led Milton Friedman (in 
1992), yet another Nobel laureate in economics, to try to set his colleagues 
straight. He discussed one of the principal theses of a book by Baumol, 
Blackman & Wolff (1989), and its review by Williamson (1991); that the rates 
of growth of various countries tend to converge. Friedman agreed with their 
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thesis but not their explanation, which, he pointed out, was statistical, not 
economic. 

 In 1927, Truman Kelley described a specific instance of a regression 
formula of great importance in many fields, although it was proposed for use 
in educational testing. It shows how you can estimate an examinee’s true 
score from his/her observed score on a test. “True score” is psychometric 
shorthand for the average of the person’s observed scores if they took 
essentially identical tests4 over and over again forever. Kelley’s equation 
relates the estimated true score (τ) to the observed score (x). It tells us 
that the best estimate is obtained by regressing the observed score in the 
direction of the mean score (µ) of the group that the examinee came from. 
The amount of the regression is determined by the reliability (ρ) of the 
test. Kelley’s equation is 

  τ = ρ•x  + (1−ρ) µ    Eq. 1 

Note how Kelley’s equation works. If a test is completely unreliable (ρ = 0), 
as would be the case if each examinee’s score was just a random number, the 
observed score would not count at all and the estimated true score is merely 
the group mean. If the test scores were perfectly reliable (ρ = 1) there 
would be no regression effect at all and the true score would be the same as 
the observed score. The reliability of virtually all tests lies between these 
two extremes and so the estimated true score will be somewhere between 
the observed score and the mean. 

 A diagram aids intuition about how Kelley’s equation works when there 
are multiple groups. Shown in Figure 5 are the distributions of scores for 
two groups of individuals, here called Group 1 (lower scoring group) and 
Group 2 (higher scoring group). If we observed a score x, midway between 
the means of the two groups the best estimate of the true score of the 
individual who generated that score depends on which group that person 
belonged to. If that person came from Group 1 we should regress the score 
downward; if from Group 2 we should regress it upward. 
                                                 
4 “Essentially identical tests” is shorthand for what psychometricians’ call “parallel forms” 
of the test. These means tests that are constructed of different questions but span the 
same areas of knowledge, are equally difficult, and are equally well put together. In fact, as 
one part of the formal definition is the notion that if two tests were truly parallel a 
potential examinee would be completely indifferent as to which form was actually 
presented. 
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Figure 5. A graphical depiction of Kelley’s equation for two groups. The two 

distributions and their means are shown.  Also indicated is how the true 
scores are regressed when two identical observed scores come from each of 

the two different score distributions. 

The regression effect occurs because there is some error in the observed 
score. The average error is defined to be zero, and so some errors will be 
positive and some negative. Thus if someone from a low scoring group has a 
high score we can believe that to some extent that person is the recipient of 
some positive error, which is not likely to reappear upon retesting, and so we 
regress their score downward. Similarly, if someone from a high scoring 
group has an unusually low score, we regress that score upward. 

 So far this is merely an equation – a mathematical tautology. What is 
the paradox? Webster defines a paradox as a statement that is opposed to 
common sense and yet is true. So long as Kelley’s equation deals solely with 
abstract groups named 1 and 2, no paradox emerges. But consider the 
similarity of Figure 5 with Figures 1 and 3 and consider the logic of 
“Strivers” which suggests explicitly that if we find someone from Group 1 
with a high score, despite their coming from an environment of intellectual 
and material deprivation we strongly suspect their true ability ought to be 
considered as being somewhat higher. Similarly, someone who comes from a 
more privileged background, but who scores low, leads us to suspect a lack of 
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talent and hence ought to be rated lower still. The underlying notion of 
“Strivers” points in the opposite direction of what would be expected 
through the application of Kelley’s equation. This is the source of the 
paradox. 

 Harvard statistician, Alan Zaslavsky, in a letter that appeared in the 
statistics magazine Chance (2000), tried to salvage the strivers idea with a 
more statistical argument. He did not question the validity of Kelley’s 
equation, when it matched the situation. But he suggested that we must 
determine empirically what is the correct distribution toward which we 
regress the observed score. Does a person selected from the lower 
distribution remain a part of that group after being selected? Or does the 
very act of being selected obviate past associations? He described a 
metaphorical race in which one set of participants was forced to carry heavy 
weights. But after they were selected, they rid themselves of the weights 
and then ran much faster than other participants who had the same initial 
speed but who had not been carrying weights. 

 Thus the issue, as Zaslavsky views it, is an empirical one. Is social 
background like a weight that can be shed with proper help? Or is it more 
like height, a characteristic one is pretty much stuck with? 
 

One empirical test of Kelley’s equation within this context was carried 
out by William Bowen and Derek Bok (1998, Figure 3.10) in their exhaustive 
study of the value of affirmative action.  They prepared a figure (analogous 
to Figure 6) that shows that black students’ rank in college class is 
approximately 25 percentile points lower than white students with the same 
SAT scores. In this metric, the effect is essentially constant over all SAT 
scores, even the highest. This confirms, at least in direction, the prediction 
described in Figure 5; the performance in college of students with the same 
SAT score is different in a way predicted by their group membership.  
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Figure 6  
Figure 6. An accurate revision of figure 3.10 from Bowen and Bok (1998) 
showing that at all levels of SAT score Black students performance in 
college courses are much lower than white students with matched SAT 
scores. This bears out the prediction made by Kelley’s equation. 

 
In a more thorough analysis Ramist, Lewis & McCamley-Jenkins (1994) used 
data from more than 46,000 students, gathered at 38 different colleges 
and universities to build a prediction model of college performance based on 
precollegiate information. One analysis (there were many others) predicted 
first year college grade point average from SAT score, from High School 
Grade Point Average (HS-GPA), and from both combined. They then 
recorded the extent to which each ethnic group was over or under predicted 
by the model. An extract of their results (from their table 8) is shown in 
Table 5. The metric reported is grade points, so that a one-point difference 
corresponds to one grade level (a B to a C, for example). The entries in this 
table indicate the extent to which students were over-predicted by the 
model based on the variables indicated. Thus the entry “0.02” for Asian 
Americans for a prediction based on just their high school grades means 
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that Asian Americans actually did very slightly (.02 of a grade level) better 
than their high school grades predicted. And the “–0.35” for Black 
Americans means that they did about a third of a point worse than their 
grades predicted. Note that while SAT scores also over-predict minority 
college performance, the extent of the error they make is somewhat 
smaller. 
 
The results from these studies are very clear; the common regression model 
over-predicts non Asian minority populations. This result matches the 
regression phenomenon we described as Kelley’s paradox. And it matches it 
in amount as well as direction. Moreover, these results are not the outcome 
of some recent social change, but have been observed for decades (Linn, 
1982; Reilly, 1973).  

Table 5 
A summary of Ramist, Lewis & McCamley-Jenkins (1994) results showing the 

size and direction of the errors in predictions for various models 
 

  Ethnic Group  
 Asian     

Predictor American White Hispanic Black 
HS-GPA 0.02 0.03 -0.24 -0.35 

SAT 0.08 0.01 -0.13 -0.23 
HS-GPA  & SAT 0.04 0.01 -0.13 -0.16 

Sample Sizes 3,848 36,743 1,599 2,475 
 

 
The Licensing of Physicians 
 
 If Kelley’s equation holds for medical students we should expect that 
the scores for black medical students on Step 1 should be lower than those 
for white students who had the same MCAT score. Figure 7 carries the 
principal results of our study. The error bars around each point are one 
standard error of the difference of the means in each direction (adjusted 
by the Bonferroni inequality to deal with the eight comparisons being made). 
Hence if the bars do not overlap the difference in the associated means is 
statistically significant well beyond the nominal levels.   
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As is evident, at each MCAT score white medical students score higher on 
Step 1 than matched black medical students. The shaded horizontal line 
stretching across the figure represents the range of passing scores used 
during the time period 1996 through 1998. The unusual data point for white 
medical students with MCAT scores of “3 or less” is not an error. It 
represents a single student who switched into undergraduate science 
courses late in her collegiate career but graduated from Wellesley with a 
3.6 GPA. Her medical school gambled that despite her low MCAT score she 
would be a good bet. Obviously the bet paid off. 
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Figure 7. Analysis of USMLE showing that at all MCAT score levels Black 

medical students performance on Step 1 are much lower than white medical 
students with matched MCAT scores. This bears out the prediction made by 

Kelley’s equation. 

The data shown in figure 7 match the direction predicted by Kelley’s 
equation, but what about the amount? Figure 8 is similar to Figure 7 except 
that we have ungrouped the data points at the ends of the distribution 
(some of the data points thus depicted are extremely unstable, being based 
on very few individuals) to present as unvarnished a view as possible. We 
have reduced the physical size of the data points that represent very few 
individuals. The lines drawn on the plot are the predictions made by 
substituting group means and the correlation between MCAT and USMLE 
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into Kelley’s equation. This yields two lines about ten points apart. We view 
this as relatively conclusive evidence that ethnicity, at least in this instance, 
is not like Zaslavsky’s metaphorical weights, but rather it is a characteristic 
that is not apparently cast off when an individual enters medical school. 
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Figure 8. A repeat of the results shown in Figure 7 with the Kelley 

predictions superimposed. This bears out the prediction made by Kelley’s 
equation in both direction and size. 

Unfortunately, academic ability in the instances we have examined is 
more like height than Zaslavsky’s metaphorical weights. Neither Mr. 
Carnevale nor Mr. Glazer is correct. Thus when you look at a Striver who 
gets a score of 1000, you’re probably looking at someone who really performs 
at 950. And, alas, a Striver is probably weaker than the unadjusted score 
indicates.  

This result should be distressing for those who argue that standard 
admission test scores are unfair to students coming from groups whose 
performance on such admission tests is considerably lower than average 
(Freedle, 2003; Mathews, 2003) and that they under-predict the subsequent 
performance of such students. Exactly the opposite of what is, in fact true, 
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for there is ample evidence that students from groups who are admitted 
with lower than usual credentials on average, do worse than expected5. The 
extent to which they perform more poorly is almost entirely predictable 
from Kelley’s equation. 

 
5. Lord’s Paradox 

 We have observed that the performance of the two groups on the 
outcome variable, the USMLE Step 1 score, depends on both performance on 
the predictor variable, the MCAT score, and on group membership. Faced 
with this observation it is natural to ask: 

How much does group membership matter in measuring the effect 
of medical school? 

To try to answer this question we: 

a. Drew a random sample from the USMLE Step 1 takers of 200 white 
examinees and 200 black examinees.  

b. Then we ranked these 400 examinees on both their MCAT scores and 
their Step 1 scores.  

c. Next we subtracted each examinee’s rank on the Step 1 from that 
person’s rank on the MCAT, and 

d. Calculated the average difference for white and for black examinees. 

We found that white examinees’ ranks improved, on average, about 19 places. 
This had to be balanced by a decline of 19 places in rank among black 

                                                 
5  Due to the nested structure of the data, we also used a multi-level modeling approach to 
determine whether the regression effect was due to, or lessened by, differences between 
medical schools.  We found that 10% of the variation in Step 1 scores was due to 
differences between medical schools and the MCAT-Biological Sciences score explained 
76% of this between-school variation.  Although we found significant variation in the 
regression effect for blacks across schools the fixed effect closely approximated the 
regression effect reported in this essay.  Furthermore, holding MCAT score constant, black 
students were predicted to have lower Step 1 scores in all 138 schools.  The percentage of 
blacks in the sample from each school explained 18% of the variance in this effect and 
indicated that schools with more blacks have a smaller (albeit substantively trivial) 
regression effect.  
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examinees, or a total differential effect of 38. The direction of this effect 
was anticipated from the previous discussion of Kelley’s Paradox.  

 But taking the difference in ranks is not the only way to estimate this 
effect. Alternatively we could use the MCAT rank as a covariate and look at 
the ranks of the individuals on the adjusted USMLE Step 1 (the residuals on 
Step 1 ranks after a linear adjustment for MCAT score). When we did 
exactly this we found that white examinees’ Step 1 ranks, after adjusting 
for MCAT scores, improved, on average, about 9 places, with black 
examinees’ ranks declining the same 9 places, for a total differential effect 
of 18. 

 The results of these two analyses were substantially different. Which 
is the right answer? This question was posed previously by Fred Lord (1967) 
in a two-page paper that clearly laid out what has since become known as 
Lord’s paradox. He did not explain it. The problem appears to be that the 
analysis of covariance cannot be relied upon to properly adjust for 
uncontrolled preexisting differences between naturally occurring groups. A 
full explanation of the paradox first appeared fully sixteen years later 
(Holland & Rubin, 1983) and relies heavily on Rubin’s model for causal 
inference (Rubin, 1974).  

 The paradox, as Lord described it, was based on a hypothetical 
situation of  

A large university is interested in investigating the effects 
on the students of the diet provided in the university dining 
halls … . Various types of data are gathered. In particular, 
the weight of each student at the time of his arrival in 
September and his weight the following June are recorded. 
(p. 304) 

Lord framed his paradox in terms of the analyses of two hypothetical 
statisticians who come to quite different conclusions from the data in this 
example.  

The first statistician calculated the difference between each 
student’s weight in June and in September, and found that the average 
weight gain in each dining room was zero. This result is depicted graphically 
in Figure 9. Note how the distribution of differences is symmetric around 
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the 45˚ line reflecting the statistician’s findings of no differential effect of 
dining room. 
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A graphical depiction of one part of Lord's paradox: the 
result obtained by subtracting each student's September 
weight from his or her June weight.

Figure 9. 

  

Figure 9. A graphical depiction of Lord’s Paradox showing the bivariate 
distribution of weights in two dining rooms at the beginning and end of each 

year augmented by the 45˚ line (the principal axis). 

The second statistician covaried out each student’s weight in 
September from his/her weight in June and discovered that the average 
weight gain was greater in Dining Room B than Dining Room A. This result is 
depicted graphically in Figure 10. Note how the distribution of adjusted 
weights in June is symmetric around each of the two different regression 
lines. From this result the second statistician concluded that there was a 
differential effect of dining room, and that the average size of the effect 
was the distance between the two regression lines. 
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Figure 10  A graphical depiction of the second part of Lord’s paradox: the 
result obtained by covarying out each student’s September weight. 

 So, the first statistician concluded that there was no effect of dining 
room on weight gain and the second concluded there was. Who was right? 
Should we use change scores or an analysis of covariance? To decide which 
of Lord’s two statistician’s had the correct answer requires that we make 
clear exactly what was the question being asked. The most plausible question 
is causal, “What was the causal effect of eating in Dining Room B?” But 
causal questions are always comparative6 and the decision of how to estimate 
the standard of comparison is what differentiates Lord’s two statisticians. 
Each statistician made an untestable assumption about the subjunctive 
situation of what would have been a student’s weight in June had that 

                                                 
6 The comedian Henny Youngmann’s signature joke about causal inference had someone ask 
him “How’s your wife?” He would then reply, “Compared to what?” 
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student not been in the dining room of interest. This devolves directly from 
the notion of a causal effect being the difference between what happened 
under the treatment condition vs. what happened under the control 
condition.  

The fundamental difficulty with causal inference is that we can never 
observe both situations. Thus we must make some sort of assumption about 
what would have happened had the person been in the other group. In 
practice we get hints of what such a number would be through averaging and 
random assignment. This allows us to safely assume that, on average, the 
experimental and control groups are the same. 

 In Lord’s set-up the explication is reasonably complex. To draw his 
conclusion the first statistician makes the implicit assumption that a 
student’s control diet (whatever that might be) would have left the student 
with the same weight in June as he had in September. This is entirely 
untestable. The second statistician’s conclusions are dependent on an allied, 
but different, untestable assumption. Specifically that the student’s weight 
in June, under the unadministered control condition, is a linear function of 
his weight in September. Further, that same linear function must apply to all 
students in the same dining room. 

 How does this approach help us to untangle the conflicting estimates 
for the relative value of medical school for the two racial groups? To do this 
requires a little notation and some algebra.   

 The elements of the model7 are: 

1. A population of units, P 

2. An “experimental manipulation,” with levels T and C and its associated 
indicator variable, S 

3. A subpopulation indicator, G 

4. An outcome variable, Y 

5. A concomitant variable, X 

                                                 
7 This section borrows heavily from Holland & Rubin (1983, p. 5-8) and uses their words as 
well as their ideas.  
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The purpose of the model is to allow an explicit description of the quantities 
that arise in three types of studies: 

a. Descriptive studies 

b. Uncontrolled causal studies 

c. Controlled causal studies 

A descriptive study has no experimental manipulation so there is only one 
version of Y and X and no treatment indicator variable S. 

Controlled and uncontrolled causal studies both have experimental 
manipulations and differ only in the degree of control that the experimenter 
has over the treatment indicator, S. In a controlled causal study, the values 
of S are determined by the experimenter and can depend on numerous 
aspects of each unit (e.g. subpopulation membership, values of covariates) 
but not on the value of Y, since that is observed after the values of S are 
determined by the experimenter. In an uncontrolled causal study the values 
of S are determined by factors that are beyond the experimenter’s control. 
Critical here is the fact that in a controlled study S can be made to be 
statistically independent of YC and YT whereas in an uncontrolled causal 
study this is not true. 

The causal effect of T on Y (relative to C) for each unit in P is given by the 
difference YT - YC. The average causal effect is E(YT - YC) = E(YT)-E(YC). 
This shows us how the unconditional means of YT   and  YC  over P have direct 
causal interpretations. But E(YT) and E(YC) are not typically observable. 
Consider that  

E(YT) = E(YT|S=T) P(S=T) + E(YT|S=C) P(S=C)    (2) 

There is a parallel version for E(YC). The second term of this expression is 
not observable. This makes explicit the fact that there is no reason why 
E(YT) and  E(YT|S=T) should be equal. Hence alone neither E(YT|S=T) nor 
E(YC|S=C) has a direct causal interpretation. 

With this model laid out, let us return to the problem of measuring the 
differential effect of medical school. 

 

     Study Design 

P : 400 medical students in the years specified. 
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T : Went to medical school 

C : ? 

    Variables Measured 

G : Student Race (W = 1, B = 2) 

X : The rank of a student on the MCAT 

Y: The rank of a student on Step 1 of the USMLE 

 

This layout makes clear that no one was exposed to C (S = T for all 
students), and so any analysis must make untestable assumptions. As is 
perhaps obvious now, the two different answers we got to the same question 
must have meant that we made two different untestable assumptions. This 
will become visible by making the inference explicit. 

The causal effect of medical school for black and white students is 

Di = E(YT –YC | G = i)     i = 1,2   (3) 

and  so the difference of average causal effects is 

D = D1 – D2     (4) 

This can be expressed in terms of individual subpopulation averages, 

D = [E(YT | G = 1) - E(YC | G = 1)] - [E(YT | G = 2) - E(YC | G = 2)]. (5) 

We can profitably re-arrange this to separate the observed YT from the 
unobserved YC 

D = [E(YT | G = 1) - E(YT | G = 2)] – [E(YC | G = 1)] - E(YC | G = 2)]. (6) 

 

The first approach estimated the effect of medical school by just looking at 
the difference in the ranks on MCAT and Step 1. In doing so made the 
(entirely untestable) assumption that an individual’s response to the control 
condition, whatever that might be, is given by his/her rank on the MCAT  

 
YC= X      (7)  

yielding, 

E(YC | G = i) = E(X| G = i).   (8) 
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The second approach estimated the effect of medical school by using the 
students’ rank on the MCAT as a covariance adjustment, which corresponds 
to the following two conditional expectations: 

E(YT |X, G = i)     i = 1,2   (9) 

and the mean, conditional, improvement in rank in group i at X is 

Ui(X) = E(YT - X|X, G = i)     i = 1,2   (10) 

Hence, the difference in these conditional ranks at X is 

U(X) = U1(X) – U2(X)    (11) 

The second analysis assumes that the conditional expectations in (9) are 
linear and parallel. Thus we can write  

E(YT |X, G = i) = ai + bX      i = 1,2  (12) 

Substituting into (10) yields  

Ui(X) = ai + (b-1)X   i = 1,2  (13) 

And hence (11) simplifies to 

U(X) = a1 – a2    (14) 

The second approach correctly interprets U(X) as the average amount that a 
white student’s (G=1) rank will improve over a black student (G=2) of equal 
MCAT score. This is descriptively correct, but has no direct causal 
interpretation since U is not directly related to D.  To make such a 
connection we need to make the untestable assumption, related to (7) that 

YC = a + bX     (15) 

Where b is the common slope of the two within-groups regression lines in 
(12). This allows the interpretation of U(X) as the difference in the causal 
effects D in equation (4). 

 

 Both of these assumptions seem to stretch the bounds of credulity, 
but (15) seems marginally more plausible. However deciding this issue was 
not our goal. Instead we wished to show how subtle an argument is required 
to unravel this last paradox in the investigation of group differences. The 
interested reader is referred to Holland & Rubin (1983) or Wainer (1991) 
for a fuller description of how Rubin’s Model of causal inferences helps us to 
understand this subtle paradox.  
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6. Conclusion 

“What we don’t know won’t hurt us, 
 it’s what we do know that ain’t” 

Will Rogers 

This essay, and the research behind it, has two goals. The first is to 
publicize more broadly the pitfalls that await those who try to draw 
inferences from observed group differences. The second is to provide 
analytic tools to allow the construction of bridges over those pitfalls.  

 
Group differences must be examined if we wish to evaluate empirically 

the efficacy of modifications in policy. But such comparisons, made naively, 
are very likely to lead us astray.  

 
Ridding ourselves of Simpson’s Paradox through the use of 

standardization is straightforward. But we must always remember that 
there may be another, unnoticed, variable that could reverse things again. 
Inferences must be made carefully. The only reasonably certain way to be 
sure that stratification by some unknown variable will not reverse your 
inference is to have random assignment to groups. When assignment is not 
random the possibility of Simpson’s Paradox is always lurking in the 
background.8 

 
Kelley’s Paradox is not so much a summary statistic pointing in the 

wrong direction, as it is an indication that our intuition has been improperly 
trained. The fact that economists fall into this trap more often than others 
may reflect on their training, but why this should be the case is a 
phenomenon that we will not try to explain.  

 

                                                 
8 Benjamin Disraeli (1804-1881) was twice prime minister of England (1868, 1874-1880). At 
an earlier time in his career he was an outspoken critic of Sir Robert Peel’s (1788-1850) 
free-trade policies, and to support his criticism he offered data defending the Corn Laws 
(1845). Peel offered counter data that justified his desire to repeal them. The two sets of 
data seemed contradictory, and Disraeli, not knowing about Simpson’s Paradox (or the use of 
standardization to correct it), exclaimed out of frustration, “Sir, there are lies, damn lies 
and statistics.” 
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Lord’s Paradox is the newest of this triad. It occurs when data 
analysts use their favorite method to assess group differences without 
careful thought about the question they are asking. It is, by far, the most 
difficult paradox to disentangle and requires clear thinking. It also 
emphasizes how the assessment of group differences often entails making 
untestable assumptions. This too should give us pause when we try to draw 
strong conclusions. 
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Table 1. Selected medical school application and licensing statistics

Frequencies

Score
MCAT-BS Black White Total Black White Total Black White Total Black White Total
3 or less 1,308    1,168       2,476    404        238         642      8           1              9          6            1               7          

4 1,215    2,094       3,309    482        557         1,039    52         10            62        39          10             49        
5 1,219    3,547       4,766    582        1,114      1,696    202       45            247      116        36             152       
6 1,269    5,289       6,558    752        1,983      2,735   417       163          580      256        140           396      
7 1,091    6,969       8,060    748        3,316      4,064   518       636          1,154    338        589           927      
8 1,234    11,949     13,183   868        6,698      7,566   705       2,284       2,989   537        2,167        2,704   
9 702       13,445     14,147   544        8,628      9,172    476       4,253       4,729   340        4,003        4,343   

10 or more 660       29,752     30,412   511        20,485    20,996 475       14,244     14,719  334        12,786      13,120  
Totals 8,698 74,213 82,911 4,891 43,019 47,910 2,853 21,636 24,489 1,966 19,732  21,698 

Selected Conditional probabilities
Probability Probability Probability Probability

of MCAT taker applying of MCAT taker being of MCAT taker of med school acceptee
Score to medical school accepted to medical school taking USMLE Step 1 taking USMLE Step 1

MCAT-BS Black White Total Black White Total Black White Total Black White Total
3 or less 0.31 0.20 0.26 0.01 0.00 0.00 0.00    0.00      0.00 0.75 0.78

4 0.40 0.27 0.31 0.04 0.00 0.02 0.03    0.00      0.01 0.75 1.00 0.79
5 0.48 0.31 0.36 0.17 0.01 0.05 0.10    0.01       0.03 0.57 0.80 0.62
6 0.59 0.37 0.42 0.33 0.03 0.09 0.20    0.03      0.06 0.61 0.86 0.68
7 0.69 0.48 0.50 0.47 0.09 0.14 0.31    0.08      0.12 0.65 0.93 0.80
8 0.70 0.56 0.57 0.57 0.19 0.23 0.44    0.18       0.21 0.76 0.95 0.90
9 0.77 0.64 0.65 0.68 0.32 0.33 0.48    0.30      0.31 0.71 0.94 0.92

10 or more 0.77 0.69 0.69 0.72 0.48 0.48 0.51    0.43      0.43 0.70 0.90 0.89
Total 0.56 0.58 0.58 0.33 0.29 0.30 0.23 0.27 0.26 0.69 0.91 0.89

1996-1998
All MCAT Takers Applied to Medical  School Accepted at Medical  School USMLE Step 1 Test Volumes
Last MCAT Score

1993-1995 1994-1996 1994-1996

 


