Pedagogical Challenges of QL

Bernard Madison
University of Arkansas
and
National Numeracy Network

Challenges
• QL is a habit of mind rather than a content-rich academic discipline.
 - Students believe that QL is mathematics and behave as they do in traditional mathematics courses.
 - They expect template problems and homework exercises that match the template, and template problems are antithetical to QL.
 - They believe QL is mathematics and therefore deem it not relevant to their lives and set apart from other areas of study.
• Abstracting generalities from contextual examples is difficult pedagogy.
• Multiple contexts challenge QL faculty and student understanding and knowledge.

Challenges - continued
• Course material must be fresh and engaging.
• Excursions into political and social issues are sometimes delicate and mysterious.
• Mathematical and statistical concepts occur repeatedly and unpredictably.
• Use of technology is essential but often foreign to students.
• Mathematics and statistics encountered is usually elementary.
• QL requires practice beyond school.

Assessment Challenges
• Assessment of QL requires authentic tasks.
 - Complex realistic, meaningful, and creative performances (Wiggins)
 - Authentic tasks require construction of knowledge, disciplined inquiry, & value beyond school (Wiggins).
• What are the learning goals for QL?
• What are the developmental steps in QL?
• What can current standardized tests tell us about students’ quantitative literacy?
• What should we value, i.e. what should we score?
• What are the standards for proficiency?
• Can we assess whether or not students are inclined to practice?
• How are mathematical and numeracy skills related?

Issues with traditional courses
• Emphases on components not processes
• Lack of mental constructs in lower level courses
• Lack of venues for continued practice beyond the course
• Not organized like the real world
• Tend to degenerate to methods and procedures
• Develop template problem expectations
• Not enough ambiguity
• Not enough interpretation and reflection

QL-Friendly Course
Mathematical Reasoning in a Quantitative World
• using numbers
• percent and percent change
• linear and exponential growth
• indices and condensed measures
• graphical interpretation and production
• counting
• probability, odds & risk
• weights and geometrics measurement
• weather maps, measurement and indices
Pedagogical Challenges of QL 6 August 2006

Canonical QL Situation

1. Encountering a challenging contextual circumstance, e.g. reading a newspaper article that contains the use of quantitative information or arguments. (Productive disposition and conceptual understanding)
2. Interpreting the circumstance, making estimates as necessary to decide what investigation or study is merited. (Adaptive reasoning)
3. Gleaning out critical information and supplying reasonable data for data not given. (Productive disposition and conceptual understanding)
4. Modeling the information in some way and performing mathematical or statistical analyses and operations. (Strategic competence and procedural fluency)
5. Reflecting the results back into the original circumstance. (Adaptive reasoning)

Characteristics of QL-friendly Course

- Mathematics is encountered in many contexts such as political, economic, entertainment, health, historical, and scientific. Teachers will require broader knowledge of many of the contextual areas.
- Pedagogy is changed from presenting abstract (finished) mathematics and then applying the mathematics to developing or calling up the mathematics after looking at contextual problems first.
- Material is encountered as it is in the real world, unpredictably. Unless students have practice at dealing with quantitative material in this way they are unlikely to develop habits that allow them to understand and use the material. Productive disposition as described by Kilpatrick, Swafford and Findell (2001) is critical for the students.
- Much of the material should be fresh -- recent and relevant.

Characteristics of QL-friendly Course - Continued

- Considerably less mathematics content is covered thoroughly.
- The mathematics used and learned is often elementary but the contexts and reasoning are sophisticated.
- Technology – at least graphing calculators – is used to explore, compute, and visualize.
- QL topics must be encountered across the curriculum in a coordinated fashion requiring those encountered in a QL-friendly course to make cross curricular connections.
- An interactive classroom is important. Students must engage the material and practice retrieval in multiple contexts.

The New York Times - October 14, 2001

One big advantage…
we are surrounded by sample problems…we just have to learn how to educate for solving them and to assess the resulting learning.

Another advantage...
we worry about how to educate for QL…so we should rely on assessment of learning to guide our work.

Refer to the December 6 letter to the editor, Math skills aren’t great.

a) Find the increase in percent proficient.

1% X=3% x=300%

b) Find the percent increase in the percent proficient.

.01 x 3.00 or .01 x 300% = .03

c) Is the letter writer correct that the original article was wrong? Why?

No, he did not correctly calculate the percent change.

d) Is the letter writer correct or incorrect when he states, “going from 1 percent proficient to 3 percent proficient is an increase of 200 percent”?

Why?

No, it is an increase of 300%, not 200%.
a) Find the increase in percent proficient.
1% → 3%
The percent proficient increased by two percentage points.
b) Find the percent increase in the percent proficient.
\[
\frac{3\% - 1\%}{1\%} = \frac{2\%}{1\%} = 200\%
\]
c) Is the letter writer correct that the original article was wrong? Why?
The letter writer was correct, but he needs to calm down a bit. It was a small, common mistake, but a mistake nonetheless.
d) Is the letter writer correct or incorrect when he states, "going from 1 percent proficient to 3 percent proficient is an increase of 200 percent?" Why?
He is correct. The editorial assumed that if the # tripled, it would mean it increased by 300%. What the editorial forget to do was add on to the original # to the problem.
1% → 3%
\[X2 / +1% = 3%\] It is the same reason why a number that doubles increases only 100%.