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Abstract: Confounding is present in most observational 
studies.  Yet by its nature, confounding is not generally 
present in the data.  In order to use statistical associa-
tions as evidence for causal connections, one must try 
to take into account the influence of confounding.  This 
paper reviews the role of confounding in the epic de-
bate between Cornfield and Fisher on the statistical 
association between smoking and lung cancer and 
Cornfield’s measure of the influence of an unobserved 
confounder in terms of a necessary condition.  This 
paper extends the approach of Cornfield and Gastwirth 
to obtain defining conditions under which a binary 
confounder will nullify – render spurious – an associa-
tion between binary variables when using a non-
interactive (NI) linear OLS regression model.  These 
defining conditions are used to derive necessary condi-
tions for NI spuriosity and reversal.  From these neces-
sary conditions, simple tests are obtained to infer 
whether an association will be increased, decreased or 
reversed after controlling for a confounder.  Using this 
non-interactive linear model, families of confounders 
are identified as mathematical objects based on their 
ability to nullify an observed relative prevalence.  This 
paper also identifies the numerical properties of a bi-
nary confounder that would nullify a given association. 
Associations that can withstand a certain size con-
founder without being nullified are considered con-
founder resistant.  This paper also identifies conditions 
under which the influence of a confounder can be 
shown as confounder intervals for an observed ratio and 
a given size confounder.  Formulas for the upper and 
lower limits of confounder intervals are determined. In 
order to highlight the influence of potential confounders 
on relative risks or prevalences in observational studies, 
data analysts should accompany these measures with 
some measure of their susceptibility to confounding 
using either the size confounder that would nullify the 
association or the interval for a given size confounder. 
Keywords: Epidemiology, Simpson’s Paradox, nullify. 

INTRODUCTION 
Statistics studies the use of statistical associations as 

evidence for causal connections.  While statistical asso-
ciations may be a sign of causation, they can also be 
influenced by confounding in non-randomized studies 
and by randomness in any study.  Statistics studies 
variation – random variation and systemic variation.  
Random variation is the basis for statistical inference; 
systemic variation is the basis for modeling.   

Statistics has developed a vast literature on random-
ness as the basis for statistical inference, and on various 

kinds of models for systemic variation.  But statistics 
has said very little to date about the influence of con-
founding since by their nature confounders are typically 
not present in the data and there is no theoretical model 
for a distribution of confounders.  For a solid back-
ground on confounding, see Rosenbaum (2005). 

The study of confounding is presented in five parts.   
1. The first part reviews the epic debate between 

Cornfield and Fisher in the late 1950s involving 
smoking and lung cancer.  To set the stage we first 
review the meaning of terms such as confounding 
and nullification.  We then review the well-known 
defining condition for nullification by a confounder 
when the variables are continuous.  Studying con-
founding involving continuous variables may indi-
cate how confounding might be handled with bi-
nary variables.  Then we return to the Fisher-
Cornfield debate involving binary variables.   

2. The second part reviews relationships involving 
differences in prevalences and develops associated 
necessary conditions.   

3. The third part reviews relationships involving two 
or three binary variables, derives the slopes in an 
ordinary least squares non-interactive model, and 
then derives the conditions under which a ratio of 
prevalences is nullified by taking into account the 
influence of a confounder.  Necessary conditions 
for nullification are derived from these defining 
conditions and are related to those derived by 
Cornfield and Gastwirth.   

4. The fourth part introduces confounder resistance: 
the ability of an observed association to resist nulli-
fication by confounders of a given size.   

5. The fifth part introduces confounder intervals to 
indicate the influence of a given size confounder.    

1.1 CONFOUNDING 
In statistics a confounder is a factor that associated 

with both the predictor and outcome in an association 
and that is not present in their analysis.1 

A triangle diagram, see Figure 1, shows the rela-
tionships between these three related factors: a predic-
tor, an outcome and a third related factor.   

Figure 1. Triangle Diagram: Three-Factor Association 
OutcomePredictor

Confounder

.
.

 

                                                           
1   In epidemiology a confounder is defined to exclude a mechanism: 

a third factor that is causally influenced by the predictor. 
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1.2 CONTINUOUS OUTCOMES 
The influence of confounding involving continuous 

variables is well known.  Consider modeling E on two 
continuous predictors A and C.  When the partial corre-
lation coefficient between A and E is zero then the 
relationship between A and E is said to be ‘spurious’ 
with respect to C.  When the model is linear and non-
interactive (NI), the regression coefficient relating E 
and A is proportional to rAE,C, the partial correlation 
coefficient between A and E after controlling for C:2,3 

Eq. 1  )1)(1(/) ( 22
, CEACCEACAECAE rrrrrr −−−=  

NI spuriosity occurs when rAE,C = 0. This implies that: 
Eq. 2  rAE = rAC rCE. 
From this defining condition we obtain two necessary 
conditions: 
Eq. 3  rAC ≥ rAE and rCE ≥ rAE 

But these two necessary conditions are not jointly 
sufficient; taken together they do not define the condi-
tion for nullification.   

We can obtain a family of confounders by grouping 
them based on their ability to nullify an association of a 
given size.  Figure 2 shows these families using phi 
instead of r to describe the correlation coefficient.  
Figure 2: Families of Equal Nullification Power 
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Note that the point at which both correlation coeffi-

cients are jointly the smallest corresponds to the point 
at which they are equal.  Thus, we might model this 
family by a single factor: the size of the correlation 
coefficient at that point.  We could say that associations 
                                                           
2  Note: rAE is the Pearson correlation coefficient between E and A. 
3  If rCE = 0 then |rAE,C| > |rAE|.  So, the association between A and E 

can not be nullified or reversed by such a confounder. 

of size rAE are resistant to confounders in the family 
having a “Confounder Size” less than Sqrt(rAE).  

Note what has been accomplished.  First, a family of 
confounders has been identified based on their common 
effect: the power to nullify a given association.  Sec-
ond, this family of confounders has been summarized 
by a single value.  Third, this value is in some sense 
representative of the values found in the family.  
Fourth, this value has the same units as the original 
association.  In short, this integrative process results in 
greater comprehension by using simple metrics that are 
representative of the data at hand.  Understanding this 
process is important for it foreshadows the process that 
will be used in identifying families of confounders 
involving binary variables.   

1.3 FISHER-CORNFIELD DEBATE 
In the 1950s, several research projects found an asso-

ciation between smoking and lung cancer.  But these 
associations were observational so it was possible that 
an unknown confounding factor might significantly 
change the associations.  

Fisher (1958) noted that genetic factors might dispose 
one on whether to smoke or on what (cigarette, pipe, or 
cigar) to smoke.  Although Fisher was a smoker, his 
article demonstrated his allegiance to the power of data.  
He did not just allude to the possibility of some con-
founding factor; he presented actual data on smoking 
choices among fraternal and identical twins.  He calcu-
lated the percentage of twins in which there were dis-
tinct differences in smoking (smoker versus non-
smoker or cigarette smoker versus pipe smoker).  His 
data showed that there were distinct differences in 
smoking choice among 51% of the fraternal twins as 
opposed to 24% of the identical twins.  He concluded, 
“There can be little doubt that the genotype exercises 
considerable influence on smoking, and on the particu-
lar habit of smoking adopted…” 

Fisher used this association to suggest that perhaps 
lung cancer was not caused by smoking per se but was 
caused by that part of the genotype that also caused 
people to smoke.  Thus people who are disposed to 
smoke would contract lung cancer at the same rate 
whether they smoke or not. 

Cornfield et al (1959) countered Fisher’s alternate 
explanation.  They derived a necessary condition – a 
minimum relative prevalence – for a confounding factor 
to explain away an observed association—assuming the 
association was totally spurious.  They wrote (Cornfield 
et al, 1959, Appendix A), 

If an agent, A, with no causal effect upon the risk of a 
disease, nevertheless, because of a positive correla-
tion with some other causal agent, B, shows an ap-
parent risk, r, for those exposed to A, relative to those 
not so exposed, then the prevalence of B, among 
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those exposed to A, relative to the prevalence among 
those not so exposed, must be greater than r.  
Thus, if cigarette smokers have 9 times the risk of 
nonsmokers for developing lung cancer, and this is 
not because cigarette smoke is a causal agent, but 
only because cigarette smokers produce hormone X, 
then the proportion of hormone-X-producers among 
cigarette smokers must be at least 9 times greater 
than that of non-smokers.  If the relative prevalence 
of hormone-X-producers is considerably less than 
ninefold, then hormone X cannot account for the 
magnitude of the apparent effect." 

Cornfield's condition can be stated algebraically. P 
denotes a probability, A denotes the apparent cause, C 
denotes the common cause and E denotes an observable 
effect.  A tilde (~) preceding a letter is the complement 
of the condition (~A = non-A) so P(~A) = 1 - P(A).  
The vertical bar (|) denotes “given”.  Thus P(C|A) is the 
probability of C given A; P(C|~A) is the probability of 
C given the absence of A.   

If factor A (smoking) had no effect on the likelihood of 
an observable effect E (lung cancer), Cornfield et al, 
proved that the prevalence of the actual cause (C) must 
satisfy: P(C|A)/P(C|~A) > P(E|A)/P(E|~A).  Figure 3 
illustrates this for the case of smoking and lung cancer.  

Figure 3.  Necessary Relationship among Relative 
Prevalences to Explain a Totally Spurious Association. 
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This necessary prevalence—Cornfield’s condition—
blunted Fisher's argument.  Fisher had noted a 2 to 1 
relative prevalence (51% vs. 24%) in smoking behavior 
for the two types of twins.  But Cornfield's condition 
required that Fisher show the prevalence of his genetic 
factor was nine times as great among smokers as among 
non-smokers.  Fisher never replied.4   

1.4 IMPACT OF CORNFIELD’S CONDITION 
Rosenbaum (1995) said of Cornfield's condition: 

                                                           
4  Actually, Fisher's comparison was of the form P(A|C)/P(A|~C) – 

the relative prevalence of smokers among those with bad genes 
versus good genes – instead of P(C|A)/P(C|~A) – the relative 
prevalence of bad genes among smokers versus non-smokers. 

Their statement is an important conceptual ad-
vance.  The advance consists in replacing a gen-
eral qualitative statement that applies in all ob-
servational studies by a quantitative statement 
that is specific to what is observed in a particular 
study.  Instead of saying that an association be-
tween treatment and outcome does not imply 
causation, that hidden biases can explain ob-
served associations, they say that to explain the 
association seen in a particular study, one would 
need a hidden bias of a particular magnitude.  If 
the association is strong, the hidden bias needed 
to explain it is large. 

Schield (1999) said of Cornfield's condition: 
Cornfield's minimum effect size is as important 
to observational studies as is the use of random-
ized assignment to experimental studies.  No 
longer could one refute an ostensive causal as-
sociation by simply asserting that some new fac-
tor (such as a genetic factor) might be the true 
cause.  Now one had to argue that the relative 
prevalence of this potentially confounding factor 
was greater than the relative risk for the osten-
sive cause.  The higher the relative risk in the 
observed association, the stronger the argument 
in favor of direct causation, and the more the 
burden of proof was shifted onto those arguing 
against causation.  While there might be many 
confounding factors, only those exceeding cer-
tain necessary conditions could be relevant. 

With this introduction to the debate, let us review the 
elements involved: the use of relative risk rather than 
correlation, and the mathematical model that was used 
to obtain Cornfield’s necessary condition.   

1.5 CORRELATION AND RELATIVE RISK 
The dispute between Fisher and Cornfield involved 

data with binary outcomes.  Subjects were labeled as 
either smokers or non-smokers.  Their deaths were 
either due to lung cancer or they were not.   

Of course it is possible to obtain a Pearson Correla-
tion coefficient using binary variables.  This form is 
commonly known as Phi (φ). But epidemiologists sel-
dom use Pearson Correlation coefficients; they use 
relative risk (RR) and the odds ratio (OR).  In the Dic-
tionary of Epidemiology (1985), the article on the Pear-
son correlation coefficient notes that special varieties 
“have occasional uses in Epidemiology.”   

Statisticians might argue that correlation should not 
be used in 2×2 tables since correlation is properly de-
fined only for continuous data where correlations can 
be generalized from samples to populations.   

Abramson and Gahlinger (2001) give reasons why 
epidemiologists prefer other measures.  "Unlike the 
odds ratio and Yule's Q, phi and lambda vary with the 
relative sizes of the case and control groups, and should 
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in general be used only if the cases and controls to-
gether make up a defined population, or comprise a 
representative sample of a defined population.  The 
values of phi and lambda are then applicable to this 
specific population…. Misleading results may be ob-
tained if the marginal totals are determined arbitrarily, 
as in case-control or cohort studies in which samples of 
arbitrary sizes are compared." 

Yet even when the entire population is surveyed or 
when the samples are representative of the entire popu-
lation, epidemiologists seem to avoid using correla-
tions.   One epidemiologist remarked that the propor-
tion of the variance which the factor explains is obvi-
ously less relevant to the issue than the proportion of 
the disease rate which is explained.  Granting that this 
is so, one wonders why.  To see this we need to explore 
the world of binary variables.   

1.6 NOTATION 
This paper deals with confounder-induced spurios-

ity.5  An association between two variables is con-
founded by a third if the third has an influence on their 
association.    An association is spurious – of no effect 
– if it vanishes after taking a confounder into account.  
Let E be a binary effect and let A and C be binary pre-
dictors.  The goal of this paper is to identify the condi-
tions when the association between A and E becomes 
spurious (is nullified) or reverses (changes sign) after 
taking into account a confounder, C. 

The variable name is used to indicate the values (e.g., 
A and non-A).  Non-A is indicated by ~A.  If E is cancer 
and A is smoker, then P(E|~A) is the prevalence of 
cancer for non-smokers.6  In order to study double 
ratios (differences between, and ratios of, prevalences), 
this notation is also used: 

Eq. 4 DP(Y:X) ≡ P(Y|X) - P(Y|~X) 
Eq. 5 RP(Y:X) ≡ P(Y|X) / P(Y|~X) 

 XRP(Y:X) ≡ RP(Y:X) - 1 
Eq. 6 AFG(Y:X) ≡ [P(Y|X) - P(Y|~X)] / P(Y|X) 
  AFP(Y:X) ≡ [P(Y) - P(Y|~X)] / P(Y) 

The colon indicates that the following value and its 
complement are involved.  Consider cancer (E), smok-
ing (A) and a cancer gene (C).  DP(E:A) is the differen-
tial prevalence of cancer for smokers vs. non-smokers. 
RP(E:A) is the relative prevalence, XRP(E:A) is the 
excess relative prevalence, of cancer for smokers vs. 
non-smokers. AFG(E:A) is the fraction of cancer cases 
in the exposure group (smokers) that are attributed to 
smoking.  AFP(E:A) is the fraction of cancer cases in 
the sampled population that are attributed to smoking.  

The selection of A vs. ~A and of C vs. ~C is arbitrary. 
This paper assumes they are selected so DP(E:A) > 0 
                                                           
5  A spurious association can also be chance-based: due to sampling 

variability when there is no association in the population.   
6  Note that P(X) signifies prevalence or percentage – not probability. 

and DP(E:C) > 0.7  These selections do not determine 
whether DP(C:A) is positive or negative. 

1.7 SMOKING AND LUNG-CANCER DEATHS 
Consider the case of smoking and deaths due to lung 

cancer.  Epidemiologists viewed the high relative risk 
of lung cancer for smokers (RR ≥ 9) as strong evidence 
of a non-spurious association.  See Cornfield (1959).   

Suppose that Table 1 were a random sample of 
deaths.8  We see that 5% of these deaths are due to lung 
cancer, that 10% of those who died are smokers, and 
that among the deceased the relative risk (RR) of dying 
due to lung cancer for smokers is 9.    

Table 1: Deaths (hypothetical) 
Deceased ~E:Other E: Lung Cancer Total 

~A: Non-smokers 875 25 900 
A: Smokers 75 25 100 

Total 950 50 1000 
The left column in Appendix A summarizes the al-

gebraic identities between many of the common meas-
ures of association between two binary variables.9  One 
form of the relation between RR (where XRP(E:A) = 
RR-1) and Phi (φ) is: 

Eq. 7 
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Given the data in Table 1, φ 2 = (9/19)(0.8/1.8)2 = 
0.094, so φ = 0.306.  How could epidemiologists con-
sider RR ≥ 9 strong evidence of a non-spurious associa-
tion if φ ≈ 0.3?  Perhaps the problem is not the use of φ  
per se, but the use of φ 2 = 1 as the standard.    

1.8   RELATIVE PHI (φ) 
What is the maximum value of φ given a certain 

prevalence, P(A), for an exposure factor?  Eq. 7 speci-
fies the relationship between the binary correlation 
coefficient φ, the relative risk RR (where XRP(E:A) = 
RR-1), the prevalence of the exposure factor P(A), and 

                                                           
7  If DP(E:A) = 0 then reversal is not meaningful. If DP(E:C) = 0 or 

DP(C:A) = 0, then spuriosity and reversal are impossible (Eq. 45). 
8  This hypothetical data is not totally unrealistic.  In the US in 1998, 

7% (160,000) of all deaths (2.3 million) were due to lung cancer.  
In the US in 1999, 26% of those 12 and older smoked cigarettes. 
Statistical Abstract of the United States: 2001, Tables 105 and 190.  

9  Cases are subjects having the outcome of interest.  Subjects are 
classified in the exposure or non-exposure groups, and in the case 
or non-case groups.  In this discussion of AFP, P(E) and P(A), the 
whole group is the population or a random sample thereof.  Preva-
lence is a rate that doesn’t involve a time interval (e.g., the unem-
ployment rate, the exchange rate).  Note that the Attributable Frac-
tion in the Population (which has population in its name) can be 
calculated for a sample as well as for an entire population.  Abram-
son (1994) discusses these measures.   RR, AFG and OR are inde-
pendent of the relative size of the exposure group, P(A), assuming 
P(E|A) and P(E|~A) are constant. Similarly, RP and OR are inde-
pendent of the relative size of the cases, P(E).  AFP and φ are de-
pendent on the prevalence of the exposed subjects, P(A), and the 
prevalence of the cases, P(E).  
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the prevalence of the outcome P(E).  When RR is infi-
nite, Eq. 7 gives the maximum value of |φ | as  

Eq. 8 φ 2Max = [P(E)/P(A)]{[1-P(A)]/[1-P(E)]}10 

In Table 1, the maximum value of φ 2 is 0.8.  

Suppose we compare the observed φ with the maxi-
mum φ possible given the observed prevalence of the 
exposure: P(A).  This would compare the observed 
factor with the factor having the same prevalence and 
having the maximum relative risk: RR = ∞. 

Eq. 9 2
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The attributable fraction in the population (AFP) is 
the fraction of cases that would be eliminated if that 
exposure factor were a necessary condition for the rate 
of cases above the base rate, P(E|~A), and if that expo-
sure factor were eliminated.11  Thus the attributable 
fraction in the population (AFP) with an exposure 
prevalence, P(A), is the same as this relative correla-
tion: the observed φ relative to the φ of a genuinely 
necessary factor – P(E|~A) = 0 which implies RR = ∞ – 
that has the same exposure prevalence, P(A).   

Using equation j in Appendix A, we can see that for 
a given predictor prevalence, P(A), the relative risk, 
RP(E:A), increases monotonically with AFP(E:A): 

Eq. 10 RP(E:A) = 1+AFP(E:A) / {P(A)[1-AFP(E:A)]} 

Thus the relative risk, RP(E:A) increases monotonically 
with φ taken relatively – relative to the maximum value 
of φ possible given a predictor prevalence of P(A), and 
an outcome prevalence of P(E).  RP(E:A) has two bene-
fits: it is independent of the size of the exposure group, 
P(A) and it increases monotonically with AFP(E:A) 
where AFP(E:A) is a relative correlation |φ /φmax|: the 
observed correlation relative to that of a genuinely 
necessary factor having the same exposure prevalence, 
P(A).   

This limit on the maximum value of φ may explain 
why epidemiologists prefer to focus on the proportion 
of the case rate that is explained, AFP(E:A), rather than 
on the proportion of the variance that is explained, φ 2.   

1.9   COMMENTS 
The attributable fraction of cases among the exposed, 

AFG, has been misrepresented as the chance that a case 
among those exposed was caused by their exposure.12  
Suppose that RP(E:A) = 3 and AFG(E:A) = 67%.  It has 
been claimed this means, “if a person has the disease in 
question and was exposed to the chemical in question, 

                                                           
10 This maximum value is like an odds ratio using margin ratios. 
11 φ 2=AFP times its diagonal exchange partner. Appendix A, Eq. A9. 
12  Source: www.toxictorts.com/relrisk.htm.  “Relative Risk: Proving 

Causation by the Numbers” by Raphael Metzger, Esq. 

the probability that the exposure caused the person's 
disease is 67%.”  We disagree.  If the exposure had 
caused 67% of the deaths among those exposed, then 
AFG(E:A) would be 67% and thus RR would be 3.  But 
arguing the reverse begs the question. 

On the other hand, the attributable fraction in the 
population is a relevant value for decision making.  If 
the exposure were in fact a causal factor and a neces-
sary condition, and if eliminating that factor eliminated 
only a small fraction of the cases, then doing so might 
not be justifiable if there are significant costs associated 
with that decision.  The following graph shows the 
relative risk needed for the attributable fraction to be 
50%: 

Figure 4.  Relative Risk Needed for Attributable Frac-
tion in the Population 
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1.10   NECESSARY CONDITIONS 

Cornfield et al. (1959) worked out the first necessary 
condition for nullification of an association between 
binary variables in terms of relative risk or prevalence.  
Indeed it was Cornfield (1951) who either created or 
popularized both Relative Risk and the Odds Ratio to 
better measure associations in Epidemiology.   

The derivation of the first necessary conditions for 
spuriosity involving binary variables arose in the argu-
ment about whether smoking causes lung cancer.  A 
clear association had been demonstrated.  But was 
smoking a direct cause of cancer or was the association 
spurious – due to some confounder?  In 1958, Fisher, a 
leading statistician and a smoker, argued that the smok-
ing-cancer association might be confounded by genet-
ics.  He found an association for twins between the 
degree of twinship (identical or fraternal) and smoking 
preference. To reply, Cornfield modeled spuriosity by 
assuming smoking (A) had “no effect”: 

Eq. 11  P(E|C,A)  = P(E|C,~A)  = P(E|C) 
Eq. 12  P(E|~C,A) = P(E|~C,~A) = P(E|~C) 

We call these conditions “cross-A rate equalities” 
because the rates are equal across A (conditionally 
independent of A).  Note that the restrictions are not on 
C, but on P(E|C) and P(E|~C).  In equations derived 
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from Eq. 11 and Eq. 12, C is replaced by c to indicate 
these restrictions.  Cornfield et al derived a variation of 
this equation: 13 

Eq. 13 
1)]:( )|~([

1)]:( )|([):(
+
+

=
cEXRPAcP

cEXRPAcPAERP  

From their variation, Cornfield et al (1959) proved that 
if the observed association is spurious then the con-
founder must satisfy this necessary condition: 
Eq. 14 RP(E:A) < RP(c:A) or 
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)|(

)|~(
)|(

AcP
AcP

AEP
AEP

≤  

Cornfield et al. (1959) replied to Fisher (italics added):   
“Thus, if cigarette smokers have 9 times the risk of 
nonsmokers for developing lung cancer [RP(E:A) = 
9], and this is not because cigarette smoke is a causal 
agent, but only because cigarette smokers produce 
hormone X, then the proportion of  hormone-X  
producers among cigarette smokers must be at least 9 
times greater than that of non-smokers [RP(C:A) > 
9]."14  

Fisher never replied.  Based on a wide range of epide-
miological data, public health officials then asserted 
that smoking was “causally related” to lung cancer.   

Using the cross-A rate equality conditions (Eq. 11, 
Eq. 12), Cornfield also derived a difference equality:  

Eq. 15 DP(E:A) = DP(E:c) DP(c:A) 

Thus, if the association between smoking and cancer is 
spurious, then the differential cancer prevalence for 
smokers vs. non-smokers, DP(E:A), must equal the 
differential cancer prevalence for cancer-gene carriers 
vs. non-carriers, DP(E:c), times the differential cancer-
gene prevalence for smokers vs. non-smokers, DP(c:A).  
Cornfield did not see this as useful.15 

Gastwirth (1988) used Cornfield’s “no effect” as-
sumption to derive an expression for spuriosity:  
Eq. 16 

):()|~(
):():():(

cEXRPAcP
AEXRPAERPAcRP +=  

Cornfield’s condition follows from this since the frac-
tion is positive.  From a form of this equation Gastwirth 
derived a second necessary condition:16 

Eq. 17 RP(E:A) ≤  RP(E:c) or 
)|~(

)|(
)|~(

)|(
cEP

cEP
AEP

AEP
≤  

This necessary condition can also be derived from Eq. 
13 which has the form, Z = [U(Y-1)+1]/[V(Y-1)+1]. 
U>0, V>0, Y>1. Since [V(Y-1)+1] > 1, [U(Y-
1)+1]/[V(Y-1)+1] < [U(Y-1)+1].   So, Z < [U⋅(Y-1)+1]. 

                                                           
13 In Eq. 13, P(c|A) > P(c|~A) since RP(E:A) > 1 and XRP(E:c) > 0. 
14 Appendix A of Schield (1999) replicates Cornfield’s derivation. 
15 “if the absolute difference, R1 - R2, is used, the relationship, R1-R2 

= (r1-r2)(p1-p2), leads to no useful conclusion about p1-p2.” 
16 Gastwirth (1988) attributed this condition to Cornfield.  But Gast-

wirth first published it, so we call it the Gastwirth condition.  

Since U < 1, Z < (Y-1)+1.  So Z < Y and RP(E:A) < 
RP(E:C). 

If the smoking-cancer association is due to a gene, 
this condition means that the relative prevalence of 
cancer among smokers vs. non-smokers [RP(E:A)] 
must be less than or equal to the relative prevalence of 
cancer among those with vs. without the gene 
[RP(E:c)].  

Note that these two necessary equations (Eq. 14 and 
Eq. 17) were derived on the basis that the predictor had 
“no effect” as defined in Eq. 11 and Eq. 12.  Note also 
the similarity between these two necessary conditions 
(Eq. 14 and Eq. 17) and the two necessary conditions 
derived earlier (Eq. 3) for the continuous case involving 
correlations. 

2. SPURIOUS DIFFERENCES 
Although Cornfield et al saw little value in his differ-
ence conditions, they are easy to derive and they are 
easy for students to calculate and understand. 

The conditions under which a difference in two ratios 
can be nullified can be derived in various ways.  The 
following presents three different approaches: the 
Cross-Rate equality approach, a regression approach, 
and a partial-correlation coefficient approach.  While all 
three generate the same equations, the different ap-
proaches have their unique strengths and weaknesses.  

2.1 Cross-Rate Equality 
A sufficient condition for “no effect” is cross-A rate 
equality: P(E|C,A) = P(E|C,~A) = P(E|C).  And 
P(E|~C,A) = P(E|~C,~A) = P(E|~C).  These give P(E|A)  
= P(E|C,A) P(C|A)  + P(E|~C,A) P(~C|A).   P(E|~A) = 
P(E|C,~A) P(C|~A) + P(E|~C,~A) P(~C|~A).  P(~C|A) 
= 1 - P(C|A). These give Eq. 18. Subtraction gives Eq. 
19..  

Eq. 18 P(E|A)  = P(E|C) P(C|A)  + P(E|~C) P(~C|A) 
   P(E|~A) = P(E|C) P(C|~A) + P(E|~C) P(~C|~A) 

Eq. 19 DP(E:A) = DP(E:C) DP(C:A) 

Since DP(C:A) ≤ 1,  

Eq. 20 DP(E:C) ≥ DP(E:A) 

Cornfield et al derived the risk-difference condition in 
Eq. 19 but dismissed it saying it “leads to no useful 
conclusion.”  This paper argues that this risk-difference 
condition is extremely useful as shown in Figure 5.  
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Figure 5.  Necessary Relationship among Absolute 
Differences to Explain a Totally Spurious Association.  
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2.2   Regression Coefficients 

The influence of a confounding factor can be expressed 
as a bias in the expected value of a regression coeffi-
cient (Wonnacott and Wonnacott 1990, p. 420).  In the 
case of three variables: A, C and E, the expected change 
in the response variable E given a change in A can be 
biased whenever one ignores the influence of a con-
founding factor C.  This bias is the product of two slope 
coefficients.   

To illustrate, let the uncontrolled coefficient regressing 
E on A be b0, the “whole effect”. When regressing E on 
A and controlling for C, let b1 be the coefficient involv-
ing A (the “direct effect”); let b2 be the coefficient 
involving C and let b3 be the coefficient regressing C on 
A so that E = b1 A + b2 C + b3 C(A). 

Wonnacott and Wonnacott show that the whole effect 
(b0) is the sum of the direct effect (b1) and the indirect 
effect (b2 b3):  

Eq. 21 b0 = b1  +  (b2 b3) 
If we fail to include C, the change in the expected value 
of E for a one unit change in A will be b0, the whole 
effect.  If C is a confounding factor, the change in ex-
pected value of E for a one-unit change in A should be 
b1, the direct effect.  This estimated change in E based 
on the whole effect will be biased by the amount of b2 × 
b3, the indirect effect.  

In relating this regression coefficient approach to Corn-
field’s nullification, we can obtain the same result ob-
tained earlier in (1d).  With no direct effect (b1 = 0), the 
direct association is completely spurious and 
Eq. 22 b0 = b2 b3 

The difference between the uncontrolled effect (b0) and 
the direct effect (b1) can be viewed as bias – an appar-
ent influence due to a failure to take account of the 
confounding factor.   

If all the variables are binary, then the regression slope 
coefficients are the difference in the associated percent-
ages:  

Eq. 23 b0 = P(E|A) - P(E|~A) = DP(E:A)  
Eq. 24 b3 = P(C|A) - P(C|~A) = DP(C:A) 
Eq. 25 b2 = P(E|C,A) - P(E|~C,A)  
Assuming A has “no effect” on E, b2 = P(E|C) - 
P(E|~C) = DP(E:C).  If b1 = 0, then b0 = b2 b3 and we 
obtain Eq. 19. 

Since these slopes are differences in probabilities, they 
have absolute values no greater than 1.  Thus we can 
deduce that b2 ≥ b0, as shown in Eq. 20. 

2.3   Partial Correlation Coefficients 
The influence of a confounding factor can be expressed 
using partial correlation.   
Eq. 26 rAE,C = {rAE - [rAC rCE]}/ √[(1-r2

AC) (1-r2
CE)] 

If the apparent association between A and E (rAE) is 
entirely spurious and is due entirely to associations with 
a common cause (C), then the association between A 
and E, conditioned on C, is zero (rAE,C = 0).  Thus, 
Eq. 27 rAE = rAC rCE 
It follows that |rAC| and |rCE| must each be at least as 
large as |rAE|.  This relationship is well known, “For a 
confounding variable to explain an association of a 
given strength, it must have a much stronger associa-
tion with both the possible causal factor and the dis-
ease” (Friedman 1994, p. 210 and 214).  

When the variables are binary, the Pearson correlation 
coefficient reduces to phi (φ ).  See Eq. A10:  

Eq. 28 )](~)(/[)(~)():(),( EPEPAPAPAEDPAE =φ  

From Eq. 27, φ (E,A) = φ (E,C)φ (C,A). Thus, 

Eq. 29 )](~)(/[)(~)():( EPEPAPAPAEDP   

=
)(~)()(~)(
)(~)()(~)():( ):(

CPCPEPEP
APAPCPCPACDPCEDP  

which reduces to Eq. 19 

2.4   Comparison of Approaches 
All three “difference” approaches give the same result 
as summarized by Eq. 19.  The cross-rate equality ap-
proach is simplest.  The regression approach is most 
powerful since it can be generalized to multiple con-
founding factors (Wonnacott and Wonnacott 1979, p. 
415).  The partial correlation coefficient approach 
clearly shows the binary form of a well known relation-
ship involving continuous variables.  

Eq. 20 gives a very simple method for determining 
whether a third variable (C) has the strength – the effect 
size – necessary to nullify or reverse an observed asso-
ciation between two other variables (A and E).  Stu-
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dents need only compare two simple differences meas-
ured in percentage points as shown in this equation: 
Eq. 30 [P(E|C) - P(E|~C)] ≥ [P(E|A) - P(E|~A)] 

If this holds, then one has a definite reason to be con-
cerned about a possible Simpson's Paradox reversal.   

2.5 TEACHING SIMPSON'S PARADOX 
For several years students in introductory statistics have 
been taught to use simple differences – differences in 
percentage points – in comparing the explanatory pow-
ers of two binary variables.  Students were cautioned 
that the truth of the percentage-point difference is not 
sufficient to imply a Simpson’s Paradox reversal – it is 
only a necessary condition.  Students have used these 
ideas as follows. 

1. Consider two hospitals: a city hospital and a rural 
hospital.  The death rate is 3% of cases at the city hos-
pital versus 2% at the rural. The combined death rate is 
2.7%.  Thus, it seems that the rural hospital is safer than 
the city hospital.  See Figure 6. 

Figure 6.  Death rates by hospital and patient condition 
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Now consider a plausible confounding factor: the con-
dition of the patient’s health.   We find that overall the 
death rate among patients in poor condition is 3.8% 
while that among patients in good condition is 1.2%. 

Here the simple difference in death rates by patient 
condition (2.6 percentage points) is greater than the 
simple difference in death rates by hospital (1 percent-
age point).  Thus we have strong reason to be con-
cerned about a possible Simpson's Paradox reversal of 
the association between hospital and death rate.  To 
guard against such a reversal we can take into account 
(control for) patient condition when comparing the 
death rates for these two hospitals. 

2. In a group of convicted murderers, the death pen-
alty was given for 11.9% of white murderers and 10.5% 
of black murderers (Agresti 1984).  Based on this data, 
one might argue that the legal system is biased against 
whites.  However, when the sentences are classified by 
the race of the victim, the death penalty was given in 
14.0% of the cases with a white victim and 5.4% of the 
cases with a black victim.  The difference in the rate of 
death sentences by race of victim (8.6 percentage 
points) is greater than the difference in rate of death 

sentences by race of murderer (1.4 percentage points).  
To guard against a Simpson's Paradox reversal we must 
take into account the race of the victim when studying 
the association between the death penalty and the race 
of the murderer.  See Figure 7.  

Figure 7.  Death sentence rates 
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3. Cryer and Miller (1991, p. 93) discuss renewal 
rates of magazine subscriptions.  In one year the overall 
renewal rate was increased between January and Febru-
ary.  Yet the renewal rate in every category went down.  
With six kinds of subscriptions, the confounder is diffi-
cult to see.  But if we eliminate all types of subscrip-
tions except the two largest groups, we obtain the re-
sults shown in Figure 8.  The combined renewal rate for 
both months combined was 53%.  The combined rate 
was 51% in January and 64% in February.  The two-
month renewal rate for regular renewal was 75% while 
that for subscription agents was 20%.  The difference in 
renewal rates by type of subscription (55 percentage 
points) is much greater than the difference in renewal 
rates by month (13 percentage points).  Thus to under-
stand the month-to-month difference, we must take into 
account the type of subscription.  This example shows 
that even a time difference is susceptible to Simpson's 
Paradox.  

Figure 8.  Renewal rates by month and subscription 
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3. CHOICE OF MODELS 

Recall that two the three approaches used in the pre-
ceding section involved the use of a linear model.  
Since we could obtain the same results without assum-
ing linearity that feature was less critical.  But in the 
coming sections, the choice of the model is more criti-
cal.   

In deciding how to model an association between 
three binary variables, there are three items to consider.  



2008-06-23 Confounder Influence, Resistance and Intervals DRAFT 
  

2006SchieldBurnhamMAA1Rweb.doc Page 9  

First, the outcome variable is binary.  Second, the data 
points involved are actually averages from which group 
averages are linear combinations based on the weights 
involved.  Third, the predictors are binary.  

The first point (the binary nature of the outcome 
variable) supports the use of a logistic model rather 
than an ordinary least squares (OLS) linear model.  But 
the second point supports the opposite.  The OLS linear 
model always models group averages as weighted aver-
ages of the sub-groups whereas the logistic model does 
so only in a few special cases. Thus the OLS linear 
model is superior for modeling the relation between a 
weighted average and its components.  The third point 
supports the use of an OLS linear model for two rea-
sons.  First, since the predictor variables are binary their 
range is limited so that only a small segment of the full 
logistic model would be used.  Secondly, the ability of a 
linear model to give unacceptable outcomes is limited 
by the restriction on the predictor variables. 

For these reasons, this paper uses an OLS linear 
model to summarize the association between three 
binary variables.   

3.1 NON-INTERACTIVE SPURIOSITY 
In the following models, the values of the variables 

are treated as continuous.  Rather than use new nota-
tion, we ask readers to recognize that E, A and C can be 
continuous in Eq. 31, Eq. 32, Eq. 34 - Eq. 36, and in 
Figure 9, Figure 10 and Figure 11. 

Consider modeling E on two continuous predictors A 
and C.  When the regression coefficient between A and 
E is zero, that relationship is said to be ‘spurious’ with 
respect to C.  When the model is linear and non-
interactive (NI), the regression coefficient relating E 
and A is proportional to rAE,C, the partial correlation 
coefficient between A and E after controlling for C:17,18 

Eq. 31 )1)(1() ( 22
, / CEACCEACAECAE rrrrrr −−−=  

NI spuriosity occurs when rAE,C = 0. This implies that: 
Eq. 32 rAE = rAC  rCE 

Schield (1999) applied this well-known condition for 
spuriosity to binary data and obtained this condition: 
Eq. 33 DP(E:A) = DP(E:C) DP(C:A) 
This condition (Eq. 33) is similar to the condition in Eq. 
15, but without the cross-A rate equality assumption.  
DP(C:A) > 0 for NI spuriosity (since DP(E:A) > 0 and 
DP(E:C) > 0) and for NI reversal (defined in 3.3) as 
proven in 3.6 after Eq. 45.   

3.2 CROSS-A  VERSUS NI SPURIOSITY 
Since both the cross-A rate equality condition and the 

NI model give similar results (Eq. 15 and Eq. 33), it 

                                                           
17  Note: rAE is the Pearson correlation coefficient between E and A. 
18  If rCE = 0 then |rAE,C| > |rAE|.  So, the association between A and E 

can not be nullified or reversed by such a confounder. 

may be worth explicating their difference. The differ-
ence equation (Eq. 33) can be written as equal slopes: 
∆Y/∆X = DP(E:A)/DP(C:A) = DP(E:C)/(1-0). For other 
forms see Equations F9 in Appendix F.  Figure 9 shows 
data that satisfies this slope condition.   
Figure 9:  Non-Interactive (NI) Spuriosity  
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In Figure 9, P(~A,~C) = 8/20, P(~A,C) = 3/20, 

P(A,~C) = 2/20 and P(A,C) = 7/20 so n = 20.  
P(E|~A,~C) = 2/8, P(E|~A,C) = 3/3, P(E|A,~C) = 2/2 
and P(E|A,C) = 3/7 so P(E) = 10/20 = 50%.  

In cross-A rate equality, P(E|~A,C) = P(E|A,C) = 
P(E|C) and P(E|~A,~C) = P(E|A,~C) = P(E|~C).  So 
Figure 9 does not involve cross-A rate equality.  P(E|C) 
is always a weighted average of two rates: P(E|A,C) 
and P(E|~A,C).  For cross-A rate equality, these rates 
are equal, so the weights don’t matter. For non-
interactive spuriosity, these rates can be unequal so the 
weights do matter. 

3.3 NON-INTERACTIVE REVERSAL 
Non-interactive (NI) reversal is readily seen using the 

regression approach presented by Wonnacott and Won-
nacott (1990, Appendix 13-5).  A regression model 
generates a line, E(A) or C(A), or a surface, E(A,C): 

Eq. 34 E(A)  =   k1  +   b0(E|A) A 
Eq. 35   E(A,C) =  k2 + b1(E|A,C)A + b2(E|A,C)C 
Eq. 36 C(A)   =  k3   +   b3(C|A) A. 
They showed these four slopes are related as follows: 

Eq. 37 b0(E|A) = b1(E|A,C) + [b2(E|A,C)  b3(C|A)]. 
Eq. 38 whole effect = direct effect + indirect effect. 
An NI model with two binary predictors generates a 
surface, E(A,C), that has two parallel edges: The ~A 
line, E(A=0,C); the A line, E(A=1,C).  See Figure 10.  
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Figure 10: NI Reversal: Direct and Whole are Opposite 
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The ~A line always runs through P(E|~A); the A line 
always runs through P(E|A).   

The whole effect of A on E, b1(E|A), is DP(E:A) 
while b1(C|A) is DP(C:A).  The direct effect of A on E 
is the vertical distance between the two lines. 

Non-interactive (NI) reversal of the association be-
tween A and E occurs when the signs of their coeffi-
cients are opposite in the one and two factor models:  
Eq. 39 b0(E|A) b1(E|A,C) < 0.  
Thus, NI reversal occurs when the sign of the whole 
effect is opposite the sign of the direct effect.  Since 
DP(E:A) > 0 the whole effect is positive and the direct 
effect is negative.  If DP(C:A) > 0, the A line lies be-
neath the ~A line: a geometric condition for NI reversal. 

3.4 DEFINING AND NECESSARY CONDITIONS 
Non-interactive (NI) spuriosity is also defined by: 

Eq. 40 b1(E|A,C) = 0. 
Although correlation (rAE,C = 0 or Eq. 32) is a primary 
defining condition, Eq. 40 is a direct corollary.19  Ap-
pendix F contains consequences of Eq. 40.  Appendices 
B through E give details on NI modeling.  

If the association between A and E is NI spurious, 
then b2(E|A,C) = DP(E:C) as shown in footnote 64, the 
direct effect is zero, the whole effect equals the indirect 
effect, and we obtain Eq. 33.   

NI spuriosity and NI reversal are closely related.  The 
defining condition for NI spuriosity (Eq. 40) is a 
boundary of the defining condition for NI reversal (Eq. 
39).  Since b1(E|A) = DP(E:A) and since we are assum-
ing that DP(E:A) > 0, we can state the defining condi-
tion for NI reversal as: 
Eq. 41 b1(E|A,C) < 0. 

3.5 BENEFIT OF NECESSARY CONDITIONS 
When little is known about the confounder, necessary 

conditions can be weaker but more useful.   
Textbooks seldom indicate a way to estimate whether 

an observed association is spurious.  After studying 
Simpson’s Paradox, one student concluded one should 
never place any trust in any association based on an 

                                                           
19  If r = 0, then b = 0 since b = r (Sy/Sx). 

observational study.  And if there is no way to antici-
pate when a Simpson's Paradox reversal could occur, 
this student is absolutely right.  One solution is to ig-
nore observational studies and deal only with random-
ized experiments where the problem of confounding is 
minimized.  However, experiments are not always 
possible, and most students studying statistics are in 
fields that deal primarily with observational studies.  
Furthermore, an increasing amount of health data is 
obtained from observational studies, so students need to 
learn how to deal with associations based on observa-
tional studies. 

To help students better understand how a statistically 
significant association can still be spurious, we need to 
focus on the necessary conditions for spuriosity.  

3.6 JOINT NECESSARY CONDITIONS 
A condition that is necessary for NI spuriosity, 

b1(E|A,C) = 0 may not be necessary for NI reversal, 
b1(E|A,C) < 0.20  One condition necessary for both is 
the following:21  
Eq. 42 b1(E|A,C) ≤ 0.   
Any condition that satisfies this is necessary for both 
b1(E|A,C) = 0 and for b1(E|A,C) < 0.22 

From Eq. E1c in Appendix E, it follows that:23 
Eq. 43 b1(E|A,C) = K1 [DP(E:A) - DP(C:A) DP(E:C)] 
 where K1 = 1/[1-DP(C:A)DP(A:C)]. 
Since K1 > 0, combining the joint condition (Eq. 42) 
with this form of b1 gives this necessary condition:  
Eq. 44 DP(E:A) ≤ DP(C:A) DP(E:C).   
Since DP(E:A) > 0 and DP(E:C) > 0, it follows that 
DP(C:A) > 0, so RP(C:A) > 1, for both NI spuriosity 
and NI reversal.  Since 0 < DP ≤ 1,24  
Eq. 45 DP(E:A) ≤ DP(C:A) and DP(E:A) ≤ DP(E:C).   

Similarly structured relations involving correlation 
coefficients are obtained from Eq. 31.25   

From Eq. E2c in Appendix E, it follows that: 
                                                           
20  Necessary conditions exist for one that are not necessary for the 

other.  RP(C:A) < P(E|A) / [P(E|~A)-P(E|~C)] (from Eq. F12) is 
necessary for NI spuriosity, but not for all NI reversals.   

21 Necessity can be confused with sufficiency. Note that b1>0 is 
sufficient to make both b1=0 and b1<0 false. Hence ~(b1>0) or 
b1≤0 is necessary for both. The “joint” applies to being necessary 
for NI spuriosity and NI reversal.  This joint necessity does not 
apply to b1=0 and to b1 < 0 simultaneously – since that is impossi-
ble.  

22  If a joint necessary condition is L ≤ R then an increase in R or 
decrease in L makes NewL < NewR a necessary condition for 
both.  If a necessary condition is false, then the conclusion is false.  

23  Recall that the whole effect is b1(E|A) = DP(E:A).  If K1 = 1, the 
indirect effect is DP(C:A) DP(E:C), but this is a degenerate case. 

24  If DP(C:A) = 1, we have co linearity: a non-useful degenerate case. 
25  DP(E:A) > 0 and DP(E:C) > 0, so rAE > 0 and rCE > 0.  Since 

b1(E|A,C) is proportional to rAE,C, applying Eq. 42 to Eq. 1 gives 
rAE ≤ rAC   rCE  as a necessary condition for NI spuriosity and rever-
sal.  So rAE ≤ rAC rCE,  rAE ≤ rAC, and rAE ≤  rCE are necessary for NI 
spuriosity and reversal.  These are analogs of Eq. 44 and Eq. 45. 
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Eq. 46 b1(E|A,C)=K2[AFP(E:A)-
AFP(C:A)AFP(E:C)] 

where K2 = P(E)/{P(A)[1-DP(C:A)DP(A:C)]}. 
Since K2 = P(E)K1/P(A), K2 > 0. Combining the joint 
condition (Eq. 42) with this form of b1 gives this neces-
sary condition: 
Eq. 47 AFP(E:A) ≤  AFP(C:A) AFP(E:C). 
AFP(E:A) is the fraction of E attributable to A in the 
population. Since 0 < AFP < 1, 26 
Eq. 48 AFP(E:A) < AFP(E:C); 

AFP(E:A) < AFP(C:A). 

From Eq. E3c in Appendix E, it follows that: 
Eq. 49  

]1):( )|~()[:({3),|(1 += CEXRPACPAEXRPKCAEb  
)]}:( ):( )|~([ CEXRPACXRPACP−  

 when K3 = P(E)/{[1-DP(C:A)DP(A:C)] 
 [P(A)XRP(E:A)+1][P(C)XRP(E:C)+1]} 

K3 = P(A) 
K2/{[P(A)XRP(E:A)+1][P(C)XRP(E:C)+1]} so K3 > 
0.  Combining the joint condition (Eq. 42) with this 
form of b1 gives this necessary condition: 

Eq. 50 
)]:( )|~([1

):( )|~( ):():(
CEXRPACP

CEXRPACPACXRPAEXRP
+

≤  

The denominator is more than 1; the product of the first 
two factors in the numerator is less than 1.27 Replacing 
both with 1 gives a necessary condition that is a gener-
alization of the Gastwirth-Cornfield condition (Eq. 17): 
Eq. 51 XRP(E:A) < XRP(E:C), RP(E:A) < RP(E:C). 
In Eq. 50, the denominator is greater than 1, so the 
inequality remains if we replace it with 1. This gener-
ates: 
Eq. 52 XRP(E:A) < XRP(C:A) P(C|~A) XRP(E:C). 
If XRP(C:A) P(C|~A) < 1, Eq. 52 is stronger than Eq. 
51.  If XRP(E:C) P(C|~A) < 1, Eq. 52 is stronger than 
Eq. 55.   

From Eq. E4c in Appendix E: 
Eq. 53 b1(E|A,C) = -K4{[P(C) XRP(E:C) XRP(C:A)] - 
 XRP(E:A)[P(C) XRP(E:C)+1+P(A) XRP(C:A)]} 
if K4 = P(E)/{[1-DP(C:A)DP(A:C)][P(A)XRP(E:A)+1] 

[P(C)XRP(E:C)+1][P(A)XRP(C:A)+1]} 

Since K4 = K3/[P(A)XRP(C:A)+1], K4 > 0.  Combining 
the joint condition (Eq. 42) with this form of b1 gives 
this necessary condition: 

Eq. 54 
1):()():()(

):():()():(
++

≤
ACXRPAPCEXRPCP

CEXRPACXRPCPAEXRP . 

Since the items being added in the denominator are 
positive, we can retain the inequality by retaining any 
                                                           
26  DP(E:A)=AFP(E:A) P(E)/P(A).   DP(E:A)>0 implies AFP(E:A)>0. 
27  [XRP(C:A) P(C|~A)] = [P(C|A) - P(C|~A)] < P(C|A) < 1.  

one of them.  Doing this from left to right gives these 
three necessary conditions: 
Eq. 55 XRP(E:A) < XRP(C:A), 
Eq. 56 XRP(E:A) < [P(C)/P(A)] XRP(E:C), 
Eq. 57 XRP(E:A) < P(C) XRP(C:A) XRP(E:C). 
Eq. 55 is a generalization of Cornfield’s condition  
(Eq. 14).  Eq. 56 is more restrictive than the generalized 
Gastwirth-Cornfield condition (Eq. 51) if P(C) < P(A).  
Eq. 57 is less restrictive than Eq. 52 but might be more 
useful.28  Since P(C) ≤ 1, Eq. 57 yields Eq. 58:29 
Eq. 58 XRP(E:A) < XRP(C:A) XRP(E:C). 

For the case of smoking and cancer, the generaliza-
tion (Eq. 51) of the Gastwirth-Cornfield condition 
means that if this association were spurious and 
RP(E:A) were 9, then RP(E:C) must be greater than 9 
for a hypothetical genetic confounder.  But if the preva-
lence of such a genetic confounder, P(C), was 10%, and 
the smoker prevalence, P(A), was 40%, then this new 
condition (Eq. 56) would require RP(E:C) > 33.  

3.7 “NO EFFECT” SPURIOSITY 
Under NI spuriosity, the two cross-A rate differences, 

DP(E:A|C) and DP(E:A|~C)30, must either be opposite 
in sign (Figure 9) or zero (cross-A rate equality).   

In Appendix D, it is shown that any instance of cross-
A rate equality must involve NI spuriosity.  Since 
Figure 9 is an example of NI spuriosity which does not 
involve cross-A rate equality, we infer that cross-A rate 
equality is a special case of NI spuriosity.   

3.8 GEOMETRY OF NI REVERSAL 
Eq. 41 gives a defining condition for NI reversal.  

Using Eq. 43 with Eq. 41 gives this form: 
Eq. 59 DP(E:A) / DP(C:A) < DP(E:C). 

Figure 11 illustrates this condition graphically. The 
light dotted lines are the edges of the E(A,C) surface for 
A and ~A where the A line lies below the ~A line.  
P(E|C) is between E(0,1) and E(1,1); P(E|~C) is be-
tween E(0,0) and E(1,0).  See Eq. D6.  
DP(E:A)/DP(C:A) is the slope of the dark solid seg-
ment. The slope of the dashed line, [E(1,1)-E(0,0)]/1, is 
the maximum of DP(E:A)/DP(C:A) and the minimum 
of DP(E:C)/1.31   

                                                           
28  This is more restrictive than Eq. 51 and Eq. 55 if both XRPs < 1.  It 

is more useful than Eq. 52 or Eq. 56 if P(C|A) or P(C) are un-
known.  

29  RP(E:A)-1 < [RP(C:A)-1][RP(E:C)-1] = [RP(C:A) RP(E:C) - 
RP(C:A) - RP(E:C) + 1] < RP(C:A) RP(E:C) – 1 -1 + 1.  

30  DP(Z:X|~Y) ≡ [P(Z|X,~Y) - P(Z|~X,~Y)] is analogous to Eq. 4. 
31  The maximum of DP(E:A)/DP(C:A) and minimum of DP(E:C)/1 

are achieved simultaneously only under NI spuriosity. 
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Figure 11: Geometric Condition for NI Reversal 
NI Reversal: P(E|A) is on the Lower Line
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A geometric condition for NI reversal is that the A line 
lies below the ~A line so P(E|A) lies on the lower line.   

3.9 SIMPSON’S REVERSAL 
Simpson’s Paradox exists when the sign of associa-

tion in each sub-group (C and ~C) is opposite the sign 
in the composite group.  We define Simpson’s reversal 
as the reversal occurring in Simpson’s Paradox.  When 
DP(E:A) > 0, this gives: 32   
Eq. 60 DP(E:A|C) < 0, DP(E:A|~C) < 0  

Not all NI reversals involve a Simpson’s reversal.  
Figure 9 illustrates an NI reversal but not all the signs 
of the sub-group differences are opposite that in the 
composite: DP(E:A|C) < 0 but DP(E:A|~C) > 0.   

Simpson’s reversal cannot occur without NI reversal 
as shown using this identity (Eq. B7 in Appendix B): 
Eq. 61 DP(E:A) = DP(C:A) DP(E:C) + X, 
Eq. 62 where X = [P(E|A) - P(E|C) P(C|A)  
    - P(E|~C) P(~C|A)] / P(~A). 
In Eq. 62, X < 0 is another form of the defining condi-
tion for NI reversal (see Eq. 44).  As defined in Eq. 60, 
a Simpson’s reversal is sufficient to make X < 0 in Eq. 
61.  So, all instances of Simpson’s reversal must in-
volve an NI reversal.  But not vice versa since a Simp-
son’s reversal is not necessary for X < 0 in Eq. 62.  

3.10     INFERENCES 
The influence of a confounder, C, on an observed as-

sociation between A and E can be inferred without  
doing the regression provided one has information on 
comparisons of single-predictor prevalences: P(X|Y).  
Assume as usual that values of A and C are selected so 
DP(E:A) > 0 and DP(E:C) > 0.  We describe three 
cases given the (1) signs of three comparisons, (2) three 
relative differences, or (3) three simple differences. 
#1:  Direction of Change  
Since b1(E|A) = DP(E:A), Eq. 43 can be rewritten as: 

                                                           
32  If the underlying rates were coplanar with cross-A rate difference 

equality, DP(E:A|C) = DP(E:A|~C), then E(1,1) = P(E|A,C), etc.,  
See Eq. D2e.  If so, Figure 11 would illustrate Simpson’s reversal: 
DP(E:A|C) = [P(E|A,C) - P(E|~A,C)] = [E(1,1) - E(0,1)] < 0. 

Eq. 63 b1(E|A,C) = K1[b1(E|A) - DP(C:A) DP(E:C)]. 
The direction of change in the association between A 
and E can be inferred from the sign of DP(C:A):  
Eq. 64 Decrease: b1(E|A,C) < b1(E|A) if DP(C:A) > 0. 

Eq. 65 Increase: b1(E|A,C) > b1(E|A)  if DP(C:A) < 0. 
Since XRP has the same sign as DP, the sign of 
XRP(C:A) can be used to infer the direction of change.  
#2:  Non-Reversal33,34 
If XRP(C:A) > 0, then b1(E|A,C) < b1(E|A).  In this 
case, an NI reversal, b1(E|A,C) < 0, is precluded if any 
of the following are true: 
Eq. 66 XRP(E:A) > XRP(E:C),  XRP(E:A) > 

 XRP(C:A) or XRP(E:A) > XRP(C:A) XRP(E:C). 
Eq. 66 follows from Eq. 51, Eq. 55 and Eq. 58.  If all of 
the known elements of Eq. 66 are false, then an NI 
reversal is not precluded.  
#3:  Reversal 
When rearranged, Eq. 59 gives this form of the defining 
condition for NI reversal:   
Eq. 67 DP(E:A) < DP(C:A) DP(E:C). 
If Eq. 67 is true, then an NI reversal holds after taking 
the confounder into account; otherwise it does not. 

3.11    AN EXAMPLE 
The relevant outcome (E) is death, A is hospital (city 

vs. rural), and C is patient condition (poor vs. good).   
(#1) Consider these qualitative comparisons.  Death is 
more prevalent among patients at city hospitals that 
among those at rural hospitals; death is more prevalent 
among patients admitted in poor condition than among 
those admitted in good condition; and admission in 
poor condition is more prevalent among patients at city 
hospitals than among those at rural hospitals.  It follows 
that the association between city hospitals and higher 
death rates is decreased after controlling for patient 
condition because all three DPs or XRPs are positive.  
(#2)  Consider these percentage comparisons.  Death is 
57% more prevalent among patients at city hospitals 
than among those at rural hospitals, so XRP(E:A) = 
0.57.  Death is 230% more prevalent for patients admit-
ted in poor condition than for patients admitted in good 
condition, so XRP(E:C) = 2.3.  And admission in poor 
condition is 200% more prevalent among patients at 
city hospitals than among patients at rural hospitals, so 
XRP(C:A) = 2.0.  As in #1, the association between city 
hospitals and higher death rate is decreased by taking 

                                                           
33  Skip this step if DP(E:A), DP(E:C) and DP(C:A) are available. 
34  If DP(C:A) or XRP(C:A) are not available, they can be derived 

from a number of other statistics.  For example  
• P(C|A) = [P(E|A) – P(E|A,~C)]/[P(E|A,C)-P(E|A,~C)]    
• P(C|~A) = [P(E|~A) – P(E|~A,~C)]/[P(E|~A,C)-P(E|~A,~C)].   
They can also be derived using Phi(C,A), P(C) and P(A): 
• [DP(C:A)]2 = Phi2(C,A){P(C)[1-P(C)]}/{P(A)[1-P(A)]}. 
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into account patient condition.  In addition, it follows 
that a reversal of the association is not precluded, be-
cause XRP(E:C), XRP(C:A), and XRP(E:C) XRP(C:A) 
are each larger than the observed difference, 
XRP(E:A).35   
(#3)  Consider these percentage-point differences.  
Death is 2 percentage points more prevalent among 
patients at city hospitals than among those at rural hos-
pitals, so DP(E:A) = 0.02.  Death is 4.4 percentage 
points more prevalent for patients admitted in poor 
condition than for patients admitted in good condition, 
so DP(E:C) = 0.044.  And admission in poor condition 
is 60 percentage points more prevalent among patients 
at city hospitals than among patients at rural hospitals, 
so DP(C:A) = 0.6.  It follows that this association be-
tween city hospitals and higher death rates is reversed 
by taking patient condition into account, because the 
product of the two confounder-related simple differ-
ences, 0.6 times 0.044, is greater than the observed 
simple difference, DP(E:A) = .02.36 

Figure 12 summarizes these comparisons. An under-
score on a value or a dot at the end of connecting line 
indicates a common part numerator.  
Figure 12: Comparison Triangle  

C: Patient Condition:

A: Hospital
City vs. Rural

Poor Poor vs. Good

E: Outcome
Died

XRP(E:A)= 57%
DP(E:A) = .02

XRP(E:C) = 230%
DP(E:C) = .044

XRP(C:A) = 200%
DP(C:A) = 0.6

 
Now consider similar data in which admission in 

poor condition is just 30 percentage points more preva-
lent among patients at city hospitals than among those 
at rural hospitals.  It follows that the association be-
tween city hospitals and higher death rates is not re-
versed by taking into account patient condition, because 
the confounder linkages are not strong enough to re-
verse the association: (0.30)(0.044) is less than 0.02.36   
 
COLLINEARITY 

The problem of confounding is closely related to the 
problem of co-linearity.  Both involve a third factor that 
is correlated with the two factors in an association.  
There is statistical test for either.   

Unspecified alternate vs. specified.  With an unspeci-
fied alternative hypothesis, there is no way to talk about 
power, whereas with a specified alternate involving 
both a separation distance and a standard deviation, 
there is a way to talk about power.  The greater the 
                                                           
35  Note: to multiply percentages they must first be converted to fractions.  
36  If DP(E:A)/DP(C:A) < DP(E:C), the A line is below the ~A line so 

NI reversal will happen.  When DP(E:A)/DP(C:A) > DP(E:C), the 
A line is above the ~A line so NI reversal is impossible. 

separation, the smaller the standard deviation and the 
larger the sample size, the greater the statistical power.   

Confounding is different.  Sample size is not a factor 
4.1 MINIMUM SIZE 

Confounding seems omnipresent in observational 
studies. Things are tangled up and mingled together; 
everything seems to be connected to everything. An 
association between two variables is confounded by a 
third if the third is entangled with both these variables.  
While random assignment can statistically break such 
entanglements, most studies can not (or do not) involve 
random assignment. Without random assignment, there 
is no known statistical test for confounding. (Pearl, 
1998)  

Without knowing the distribution of confounders, 
there seems to be no way to say, "there is a 20% chance 
that this observed association is due to confounding" or 
"If this association were entirely spurious, there is less 
than a 5% chance of seeing an association this big or 
bigger due to confounding."   

Finally, there seems to be no generally accepted way 
to talk about the nature or size of a confounder. We 
have no way to eliminate a variable in a regression by 
saying the association is beneath some minimum 
threshold for susceptibility to confounding. There is 
nothing comparable to the “5% level of significance.” 
As a result there is no way to determine what size rela-
tive risk constitutes strong evidence for saying an asso-
ciation is not spurious. 

Operationally, epidemiologists tend to disregard rela-
tive risks of less than three as being generally inade-
quate to withstand the influence of confounding. 
Taubes (1995) noted the following:  

Sir Richard Doll of Oxford University, who once co-
authored a study erroneously suggesting that women 
who took the anti-hypertension medication reserpine 
had up to a fourfold increase in their risk of breast 
cancer, suggests that no single epidemiologic study is 
persuasive by itself unless the lower limit of its 95% 
confidence level falls above a threefold increased 
risk. Other researchers, such as Harvard's Trichopou-
los, opt for a fourfold risk increase as the lower limit. 
Trichopoulos's ill-fated paper on coffee consumption 
and pancreatic cancer had reported a 2.5-fold in-
creased risk. "As a general rule of thumb," says An-
gell of the New England Journal, "we are looking for 
a relative risk of three or more [before accepting a 
paper for publication], particularly if it is biologi-
cally implausible or if it's a brand-new finding." 
Robert Temple, director of drug evaluation at the 
Food and Drug Administration, puts it bluntly: "My 
basic rule is if the relative risk isn't at least three or 
four, forget it." 
While a relative risk of three may be a rule of thumb 

in some areas, lower ratios are being used.  In conclud-
ing that second-hand smoke caused health problems, 



2008-06-23 Confounder Influence, Resistance and Intervals DRAFT 
  

2006SchieldBurnhamMAA1Rweb.doc Page 14  

the EPA relied on a relative risk of 1.2.37
 A relative 

prevalence of 1.25 is used to monitor adverse impact in 
hiring practices involving members of protected classes 
as identified by Title 7 of the 1964-1965 Civil Rights 
Act.38  And in calculating the number of deaths attribut-
able to various factors, epidemiologists are using rela-
tive risks less than 2.  See Mokdad et al, (2004).   

But as John Bailar, an epidemiologist at McGill Uni-
versity and former statistical consultant for the NEJM, 
points out, “there is no reliable way of identifying the 
dividing line.” Taubes (1995). Thus, any rule of thumb 
such as RR > 3 requires justification.39 

An important goal of science is to quantity the prop-
erties of entities. Since unmeasured confounders are 
difficult to deal with, one approach is to identify as-
sumptions under which the properties of a confounder 
are completely determined by a single value. Given the 
complete specifications of a confounder one can then 
determine its’ effects on a given association. Schield 
and Burnham (2003) have shown that specifying a 
binary confounder involves three values when using 
relative prevalences. 

The first task is to identify a simple way to determine 
all the properties of a confounder by specifying just a 
single parameter: the confounder size.  A second task is 
to identify what size confounder is required to nullify 
an observed association. Nullification is confounder-
induced spuriosity.40

 An association is spurious – of no 
effect – if it vanishes after taking a confounder into 
account. A third task is to generate intervals for an 
observed relative risk based on the influence of a binary 
confounder of a given size. 

4.2 DEFINING CONDITIONS FOR 
CONFOUNDER-INDUCED SPURIOSITY 

Schield and Burnham (2003) obtained defining con-
ditions under which an observed association would be 
made spurious by a confounder when using a non-
interactive OLS model for binary data. The OLS non-
interactive model has the form: 
Eq. 68  E(A,C) = b0 + b1 A + b2 C. 

                                                           
37 www.forces.org/evidence/ets-whop/index.htm 
38 On August 25, 1978, four federal agencies (Department of Labor, 

Equal Employment Opportunity Commission, Office of Personnel 
Management and Department of Justice) issued the Adoption by 
Four Agencies of Uniform Guidelines on Employee Selection Pro-
cedures (1978). The Uniform Guidelines provide standards for fair 
selection procedures for EEO protected classes. Adverse impact in 
the selection process is presumed when the pass rate of applicants 
from a protected class with a low pass rate is less than 80 percent 
of the pass rate of applicants from the group with the highest selec-
tion rate. This is also referred to as the “four-fifths” rule. 

39 If one had a distribution of confounders, then one might be able to 
make probabilistic statements. Of the 24 cases cited by Taubes 
(1995), 80% have RR ≤ 3. 

40 A spurious association can also be chance-based: due to sampling 
variability when there is no association in the population. 

Recall that E is the outcome of interest, A is the bi-
nary predictor and C is the binary confounder. Note that 
b1 is the partial regression coefficient between the 
outcome (E) and the binary predictor (A) after taking 
into account the influence of the confounder (C) using a 
non-interactive model. 

If b1 = 0 then any association between A and E is 
spurious. There are many forms of this spuriosity con-
dition as shown in Appendix E. The main problem is 
that at least three values must be specified for a con-
founder in order to determine its influence on an ob-
served association. 

Can we summarize these characteristics in the same 
way that we summarize a distribution by its center and 
spread? A first step is to see how these characteristics 
interact in rendering a given association spurious.  
Hopefully this will help us identify a single value that 
might be used to determine more than one property of a 
confounder. The goal is to identify summary character-
istics that will identify confounders having the same 
nullifying strength on a relative prevalence in ways that 
are meaningful and useful. 

4.3 ERROR 
In almost every case where a proxy is used to meas-

ure the presence or absence of a related condition, there 
is error.  Suppose we use a certain size confounder, S, 
as a fixed level.  All associations which are not nullified 
or reversed by that confounder are considered to be S 
confounder resistant.  All others are classified as non-
resistant.   

Assume that all these relative prevalences involve 
groups that are jointly exhaustive so as to exclude com-
parisons involving the top group with the bottom group.  
Assume also that the outcome is a natural binary and 
not a binary variable created by an arbitrary cutoff on a 
continuous distribution.   

As mentioned, relative prevalences are either S con-
founder resistant or not.  In some cases the predictor is 
spurious to some other factor while in other cases it is 
not.  These situations can be summarized in a 2x2 table. 

Table 2: Classification of Associations 
  SIZE S 

CONFOUNDER Spurious Non-Spurious 
Non-Resistant Non-causal Type 2 Error 
Resistant Type 1 Error Causal 

A predictor that in fact is spurious and is also non-
resistant to an S confounder is a true negative (non-
causal).  A predictor that is in fact non-spurious and 
resistant to an S confounder is a true positive (causal).  

A predictor that is in fact spurious and is resistant to 
an S confounder is a false positive – Type 1 error.  A 
predictor that is in fact non-spurious and is not resistant 
to an S confounder is a false negative – Type 2 error.   

Consider a type 2 error involving a weak association 
between a causal factor and the outcome.  How might 
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this occur?  Suppose that there are two causal factors.  
One is present throughout the population while the 
other is present only among a subgroup.  For either of 
these factors to cause the outcome there must be a trig-
ger – a fourth factor that is seldom present and thus the 
outcome is somewhat rare.  Since those in the subgroup 
contain both causal factors, the risk of the outcome is 
greater in the subgroup than in the rest of the popula-
tion.  The size of the relative risk is determined entirely 
by the relative prevalence of the local causal factor to 
the prevalence of the background causal factor.   

Now consider a type 1 error involving a strong asso-
ciation between a spurious factor and the outcome.  
How might this occur?  Consider the population of 
those who read either fashion magazines or sport maga-
zines.  Suppose those who read fashion magazines are 
100 times as likely to become pregnant as are those 
who read sport magazines.  Assume that reading a 
magazine has no causal power to produce pregnancy so 
that both associations are spurious.  In this case we 
recognize the confounder – gender.  Women are more 
likely to read fashion magazines while men are more 
likely to read sport magazines.  And pregnancy is much 
more prevalent among women than among men.   

Following the use of terms in medical tests, specific-
ity is 100% minus the percentage of Type 1 errors 
among those associations that are spurious while sensi-
tivity is 100% minus the percentage of Type 2 errors 
among those associations that are non-spurious.  A type 
2 error is well known as the problem of co-linearity.  In 
this type 2 error mentioned, there is a high correlation 
between reading fashion magazines and being a woman 
and in turn there is a much higher prevalence of preg-
nancy among women than among men.   

The smaller the value of S, the greater the prevalence 
of positives: associations that can resist nullification or 
reversal by a confounder of that size.  As S decreases, 
the greater the percentage of Type 1 errors among those 
associations that are spurious and the smaller the per-
centage of Type 2 errors among those associations that 
are non-spurious.  As S decreases, the sensitivity in-
creases, but the specificity decreases.   

The greater the value of S, the greater the prevalence 
of negatives: associations that cannot resist nullification 
or reversal by a confounder of that size.  As S increases, 
the smaller the percentage of Type 1 errors among 
those associations that are spurious and the greater the 
percentage of Type 2 errors among those associations 
that are non-spurious.  As S increases, the sensitivity 
decreases, but the specificity increases.  

If our goal were to minimize the prevalence of type 1 
errors among those associations that are resistant to an 
S confounder, then we should set S higher.  But if our 
goal were to minimize the prevalence of type 2 errors 
among those associations that are not resistant to an S 
confounder, then we should set S lower.   

It would seem that in exploratory work, S would be 
set lower so as not to exclude any promising candidates.  
But in those areas involving compulsion such as regula-
tions, legal liability, etc., S should be set higher so as to 
minimize the probability of type 1 error among those 
associations that are S resistant.   

4.4 LOW PREVALENCE PREDICTORS 
Note that as the prevalence of those treated or ex-

posed decreases, the size confounder needed to nullify a 
given association increases.   

For example, suppose we are looking for associa-
tions with death due to bulimia.  We take the exposure 
group to be people who read early-20s fashion maga-
zines while the non-exposure group is everyone else.  
The prevalence of the exposure group is small – proba-
bly less than 1% of the adult population.  [No, this is a 
type 2 error.  I need a good example of a type 1 error.] 

 
4.5 INFLUENCE ON RELATIVE PREVALENCE 
One form of the condition needed for a binary con-
founder to nullify an observed excess relative preva-
lence, XRP(E:A), is given by Eq. F4b: 
Eq. 69 
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For an observed excess relative prevalence XRP(E:A) 
and predictor prevalence P(A), this condition involves 
three other factors: P(C), XRP(C:A) and XRP(E:C).   

Notice how XRP(E:C) is directly influenced by 
P(C) for given values of XRP(E:A), P(A) and 
XRP(C:A).  If P(C) is small, then XRP(E:C) must be 
large and vice versa.  If we have no knowledge of P(C), 
then it seems unwarranted and opportunistic to pick 
values that yield smaller values for either the con-
founder size, RP(E:C) or the confounder linkage with 
the predictor, RP(C:A).   

To avoid opportunism and to simplify things, as-
sume that P(C) = P(A).  This restricts confounders to 
those in the same prevalence class as the exposure, just 
as the Attributable Fraction of Cases in the Population 
(AFP) measures the correlation between exposure and 
cases – relative to the maximum possible for exposures 
in the same prevalence class: e.g., P(C) = P(A).  See 
Schield and Burnham (2002). 

Since the confounder is hypothetical, there is no 
claim that this assumption or stipulation is realistic.  
Only that it is one way of achieving the stated goal of 
specifying all the properties of a confounder given the 
observed data and a single value.   

4.6 NULLIFICATION WHEN P(C) = P(A) 
When P(C) = P(A), the nullification condition is: 

Eq. 70  
):():(

)}:()](/1){[:(
):(

AEXRPACXRP

ACXRPAPAEXRP
CEXRP

−

+
=  

When P(A) = 0.5, we obtain the contours of equal 
strength shown in Figure 13.  Although there are a wide 
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range of combinations for RP(E:C) and RP(C:A) it can 
be shown that there is a symmetry around the line, 
RP(E:C) = RP(C:A).41  When a function, y = f(x), has 
one point closest to the origin, that point is given by 
dy/dx = -x/y.  Since these contours are symmetric about 
the diagonal, they are closest when their slope is -1, so 
that the closest point is x = y or RP(E:C) = RP(C:A).42   

Figure 13: RP(E:C) vs RP(C:A) Spuriosity Contours  

NI Spuriousity Contours by RP(E:A)
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When P(C) = P(A), we can describe a strength con-

tour using a single value, S, where RP(C:A) = RP(E:C) 
= S.  For a given value of RP(E:A), this combination 
gives the point closest to the origin.  This doesn’t say 
that either RP(E:C) or RP(C:A) is smallest at this point.  
There are combinations where either is smaller, but this 
is the point at which the sum of their squares is smallest 
– they are jointly minimal. 

All the other combinations can be derived given this 
one value of S since P(C) = P(A).  One advantage of 
using this minimal Cartesian distance point, XRP(C:A) 
= XRP(E:C), is that it avoids extremes.   
a. A very weak confounder XRP(E:C), minimally more 

than XRP(E:A), can still nullify an association pro-
vided XRP(C:A) is very large.  Focusing on the rela-
tively small size of XRP(E:C) needed for nullifica-
tion makes the observed association seem weak. 

                                                           
41 Let x = XRP(E:C), y = XRP(C:A), z = XRP(E:A) and k = 1/P(A).  

Eq. 70 yields, x = z(k+y)/(y-z) so z = xy/(k+x+y).  The latter 
shows the symmetry between x and y for a given z.   

42 This can be proven.  Let D2 = x2 + y2 = y2 + [z(k + y)/(y - z)] 2.  To 
minimize D for a given value of z, let dD/dy = 0.  So, y = z + 
SQRT[ z (z + k)] plus a negative and two imaginary roots.  Substi-
tuting the positive solution into the equation for x gives: x = z + 
SQRT[ z (z + k)].  So D is minimized when x = y, which means 
when XRP(C:A) = XRP(E:C) or RP(C:A) = RP(E:C) 

b. A very strong confounder XRP(E:C) is required to 
nullify an association provided the excess con-
founder prevalence, XRP(C:A) is minimally greater 
than the observed association: XRP(E:A).  Focusing 
on the large size of XRP(E:C) in this pair makes the 
observed association XRP(E:A) seem very strong.  

4.7 S CONFOUNDER NULLIFICATION 
An S confounder is hereby defined as a binary con-

founder where P(C) = P(A) and where RP(C:A) = 
RP(E:C) = S.  Using Eq. 70, it follows that an S con-
founder will nullify the association RP(E:A) when  

Eq. 71 
)]:()1)[((
)]}1)(([1){:(1

AEXRPSAP
SAPAEXRPS

−−
−+

=−  

Collecting terms, solving the quadratic and taking the 
root for S > RP(E:A)43 gives: 
Eq. 72 )]:()(/[11):():( AEXRPAPAEXRPAERPS ++=  

This equation identifies the size of an S confounder 
needed to nullify an observed association having a 
prevalence, P(A), and a relative prevalence, RP(E:A).   

Figure 14 illustrates the size of an S confounder 
needed to nullify an observed association – given the 
prevalence P(A) and the relative prevalence, RP(E:A).  

Figure 14: Minimum S Needed to Nullify Association 
Minimum Size S-Confounder

Needed to Make an Observed Association Spurious
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Consider those exposed to second hand smoke. If 

their prevalence is 25% and their relative risk of lung 
cancer is 1.2, then this association would be made spu-
rious by an S confounder of size 2.1.   

Note that the smaller the prevalence of the predic-
tor, P(A), the larger the confounder size, S, needed to 
nullify an observed association, RP(E:A).  For low-
prevalence predictors, very large confounders are re-
quired to nullify the observed association.   

Disciplines, not statisticians, must decide what size S 
confounder is considered small – just as with p-values.   

4.8 NULLIFICATION BY S CONFOUNDERS 
The largest XRP(E:A) that is made spurious by an 

S confounder as a function of P(A) is given by:44 

                                                           
43 RP(E:C) > RP(E:A) is a necessary condition for nullification.  See 

Schield and Burnham (2003). 
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Eq. 73 )]}1)((2[1/{)1)(():( 2 −+−= SAPSAPAEXRP  

As shown in Figure 15, relative prevalences under 1.5 
are made spurious by S confounders with S < 4 when 
P(A) > 0.1.   

Figure 15: Relative Prevalence Made S-Spurious 

Relative Prevalence Made Spurious 
by a Size-S Confounder 

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5

P(A)

R
P(

E:
A

)

S = 2

S = 3

S = 4
S = 6

 
If S = 5, then XRP(E:A) = 16 P(A)/[1+8 P(A)].  If 

P(A) = 0.5, RP(E:A) = 2.6; if P(A) = 0.1, RP(E:A) = 
1.9.  If epidemiologists were to require relative preva-
lences to withstand nullification by an S confounder of 
size 5, many relative prevalences would need to be 
flagged as being vulnerable to confounding.   

5.1 IDEA OF CONFOUNDER INTERVALS 
We now set aside the topic of nullification and turn 

to the question of influence.  Suppose that an S con-
founder was tangled up in the observed association, 
RP(E:A).  What value of RP(E:A) would be expected if 
that confounder were removed?   

To repeat, note that we are not saying anything 
about nullification – just about influence – so we are 
not starting from the prior nullification equations.  But 
certainly it seems useful to include the conditions P(C) 
= P(A) and RP(C:A) = RP(E:C) as determining the 
lower limit of a confounder interval.  An S confounder 
may decrease without reversal, nullify or reverse an 
observed association.  The latter is Simpson’s Paradox.  
If the confounder interval for an observed relative risk 
included unity, we would say that for that size con-
founder the observed association was not ‘confounder 
resistant’; otherwise it is ‘confounder resistant.’  

As presented in Schield (2004), standardization in-
volves moving weighted averages along the lines con-
necting the actual data points: the rates.  There is no 
necessity that these lines be parallel.  But when viewing 
the results of a non-interactive model, there is typically 
no mention of the actual rates and the associated lines 
are necessarily parallel.   

Standardizing using the four corner values from a 
non-interactive model (which are co-planar) give the 

                                                                                           
44 Since RP is continuous, this also “equals” the minimum RP(E:A) 

that can withstand being made spurious by a size S confounder.  

same results as computing the expected values using the 
model.   Using these four data points, the standardizing 
approach illustrates graphically what the non-
interactive model does algebraically.   

5.2 LOWER LIMIT 
For example, what is the influence of an S con-

founder of size 2 on an observed association with P(A) 
= 50% and RP(E:A) = 1.5?  To obtain the lower limit, 
the non-interactive model must fit four requirements:  
(1) RP(E:A) = 1.5, (2) P(C) = P(A) = 50%, (3) RP(C:A) 
= 2, and (4) RP(E:C) = 2.   Figure 16 illustrates the non-
interactive model fitting these values and the standardi-
zation from which one can obtain the lower limit. 

Figure 16: Lower Limit of Ratio after Standardizing 
Standardizing Can Decrease a Ratio
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To see (1) note that P(E|A) = 60% and P(E|~A) = 

40%, so RP(E:A) = 1.5.  To see (2) note that P(C) = 
P(A) = 50% as specified.  To see (3) note that P(C|A) = 
66.7% and P(C|~A) = 33.3%, so RP(C:A) = 2 (66.7% / 
33.3%) as specified.  Although this figure does not 
show P(E|C) or P(E|~C) directly, note that if P(E|C) = 
2/3 and P(E|~C) = 1/3, then RP(E:C) = 2 as specified.    

On the right, the weighted average of P(E|C,A) and 
P(E|C,~A) is P(E|C) = P(A|C) P(E|C,A) + P(~A|C) 
P(E|C,~A).  If P(C) = P(A), then P(A|C) = P(C|A) and 
P(~A|C) = P(~C|A), so P(E|C) = P(C|A) P(E|C,A) + 
P(~C|A) P(E|C,~A).  If P(E|C,A) = 0.7, P(E|C,~A) = 0.6 
and P(C|A) = 2/3, then P(~C|A) = 1/3 and P(E|C) = 
(2/3)(70%) + (1/3)(60%) = +46.67% + 20% = 2/3.  On 
the left, the weighted average of P(E|~C,A) and 
P(E|~C,~A) is P(E|~C) = P(A|~C)P(E|~C,A) + 
P(~A|~C)P(E|~C,~A).  Since P(C) = P(A), P(A|~C) = 
P(C|~A) and P(~A|~C) = P(~C|~A), so P(E|~C) = 
P(C|~A) P(E|~C,A) + P(~C|~A) P(E|~C,~A).  If 
P(E|~C,A) = 0.4, P(E|~C,~A) = 0.3 and P(C|~A) = 1/3, 
then P(~C|~A) = 2/3 and P(E|~C) = (1/3)(40%) + 
(2/3)(30%)  = 13.3% + 20% = 1/3. 

After taking into account the influence of this con-
founder, the standardized value of P(E|A) is 55% and 
the standardized value of P(E|~A) is 45%.  Thus, the 
standardized value of the relative prevalence of E for A, 
the lower limit of this confounder interval, is 1.22. 
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5.3 UPPER LIMIT 
Now we turn to obtaining the upper limit of an S 

confounder interval.  Recall that the removal of a con-
founder can increase the value of an association, 
RP(E:A) as well as decrease the value.  Since we know 
almost nothing about the confounder it seems inappro-
priate to assume that it must always decrease the ob-
served association.  Suppose that A and C are chosen so 
that RP(E:A) and RP(C:A) are both greater than unity.  
Schield and Burnham (2003) showed that in this case 
the direct effect is greater than the whole effect only if 
0 < RP(C:A) < 1.   

What value of RP(C:A) less than 1 can be readily 
determined given RP(E:C)?  An obvious choice is 
RP(C:A) = 1/RP(E:C).  What is happening is that the 
confounder groups, C and ~C, are being exchanged – 
not in relation to the outcome E but in relation to the 
predictor groups, A and ~A.  In this sense, RP(C:A) = 
1/RP(E:C) used for the upper limit is closely related to 
RP(C:A) = RP(E:C) used for the lower limit.   

Using a non-interactive model, Figure 17 illustrates 
the standardization from which one can obtain the up-
per limit of a size S=2 confounder interval for P(A) = 
50% and RP(E:A) = 1.5. 

Figure 17: Upper Limit of Ratio after Standardizing 
Standardizing Can Increase a Ratio
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Note the four requirements this non-interactive 

model must fit: (1) RP(E:A) = 1.5, (2) P(C) = P(A) = 
50%, (3) RP(C:A) = 1/2, and (4) RP(E:C) = 2.  To see 
(1) note that P(E|A) = 60% and P(E|~A) = 40%, so 
RP(E:A) = 1.5.  To see (2) note that P(C) = P(A) = 50% 
as specified.  To see (3) note that P(C|A) = 33.3% and 
P(C|~A) = 66.7%, so RP(C:A) = 1/2.  Although P(E|C) 
and P(E|~C) are not shown directly, note that if P(E|C) 
= 2/3 and P(E|~C) = 1/3 then RP(E:C) = 2..   

P(E|C) is a weighted average on the right. Since 
P(C)=P(A), P(E|C) = P(C|A) P(E|C,A) + P(~C|A) 
P(E|C,~A). 2/3 = (1/3)(90%) + (2/3)(55%) = 30% + 
36.67%.  P(E|~C) is a weighted average on the left.  
Since P(C) = P(A), P(E|~C) = P(C|~A) P(E|~C,A) + 
P(~C|~A) P(E|~C,~A).  1/3 = (2/3)(45%) + (1/3)(10%) 
= 30% + 3.33%. 

After taking into account the influence of this con-
founder, the standardized value of P(E|A) is 2/3 and the 
standardized value of P(E|~A) is 1/3.  Thus the stan-
dardized value of the relative prevalence of E for A, the 
upper limit of this confounder interval, is 2. 

So having obtained both the lower and upper limits 
of this S confounder interval, we can state the size of 
this particular confounder interval as follows.  Given an 
observed relative prevalence of 1.5 and a predictor 
prevalence of 50%, the confounder interval due to a 
size 2 confounder is given by [1.22, 2.0].45,46 

To summarize, for the S confounder interval pro-
posed herein, both lower and upper limits presume that 
P(C) = P(A).  The lower limit is that determined by 
RP(C:A) = RP(E:C) = S while the upper limit is that 
determined by RP(C:A) = 1/RP(E:C) = 1/S.   

5.4 CONFOUNDER INTERVAL FORMULAS 
Appendix G derives the standardized values for 

P(E|A) and P(E|~A) when P(C|A) = P(C|~A) = P(C) in 
terms of the slope b1 in the non-interactive model.  
Various combinations of these standardized values are 
also obtained.  The spuriosity conditions obtained ear-
lier can be obtained from these formulas.   

It may be useful to see these standardized values in 
terms of the conditions specifying the predictor and the 
confounder – without including b1.  The limits of S 
confounder intervals when P(C) = P(A) are derived for 
P(E)/P(E|~A), in Appendix H and for the relative preva-
lence RP(E:A) in Appendix I.  In both cases, the formu-
las seem to conceal more than they reveal.  Hopefully 
they contain analytical relationships that enable a better 
understanding of the underlying dynamics.   

Figure 18 illustrates the lower limit of relative 
prevalence confounder intervals involving S confound-
ers of size 2, 3 and 4.  As a function of RP(E:A), these 
lower limits are nearly linear.   

                                                           
45 The first of these confounder intervals was obtained on 12/23/2003 

using Excel with co-planar rates for RP(E:A) = 1.25, P(A) = 0.5.   
46 We avoid using ‘model’ in talking about an S confounder to 

emphasize that standardized values are based on a model – not the 
specifications of the S confounder.  We avoid using ‘adjusted’ to 
emphasize that the data itself is not being adjusted.  
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Figure 18: Confounder Lower Limits for RP(E:A)  
Confounder Intervals: Lower Limits
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Although the language of direct, whole and indirect 
effects is properly used only for differences, the terms 
can be appropriated for ratios provided the equation 
relating these items is set aside.  Consider a whole 
effect given in terms of a ratio, RP(E:A), the observed 
relative prevalence association between A and E.  Eq 
G6b in Appendix G presents just the direct effect in 
terms of a ratio given the whole effect and an S con-
founder.   

Figure 19 shows the upper and lower limits of a 
confounder interval as a function of confounder size. 

Figure 19: Confounder Interval for Size S 
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Some combinations of values may drive these 

equations into regions involving unacceptable values 
where the upper limit goes infinite or drops below 1, or 
where the lower limit goes below zero.   

5.5 DISCUSSION 
These relationships may be useful in educating data 

analysts and journalists on the possible influence of 
unobserved confounders even though these relation-
ships just restate the size of the original association, 
RP(E:A), in different terms (since there is not yet any 
objective basis for selecting confounder sizes).   

Furthermore, these relationships may be useful in 
setting rules or standards for publication by journal 
editors.  They may even be useful in modeling to set a 
minimum criterion for including a predictor so as to 

avoid including predictors that may be statistically 
significant, but are too weak to withstand nullification 
by a confounder of a given size.   

A deeper question involves the ability of relative 
prevalence to measure the causal status of the predictor.  
More work may be needed on this foundational issue.  

5.6 RECOMMENDATIONS 
The following are recommendations for handling count-
based associations obtained from observational studies.   
1. Those presenting relative risks or prevalences 

should indicate the minimum size S confounder that 
would nullify the observed association.  

2. Those using relative risks or prevalences to make 
decisions for publication or for action should set 
minimum standards of the confounder size which an 
acceptable association must resist without being nul-
lified or reversed – or what size confounder one 
should use in giving confounder intervals.   

3. More analysis is needed on the use of a double ratio 
such as relative risk to measure the strength of evi-
dence on the causal status of the predictor.  

 

6 CONCLUSION 
This model of confounding is primitive and the choice 
of a value to use in discriminating between spurious 
and non-spurious associations is somewhat ad hoc.  On 
an absolute scale, this model is far from the stature of 
the binomial model of chance.  But on a relative scale, 
given that there are only a few rules of thumb, this 
proposed measure may be of some value for those who 
are trying to set aside those statistical associations that 
provide the weakest support for causal connections.   
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A11 was derived in Schield (1999).  A6 is Bayes rule.  Using De-
rive, Thomas Burnham created and validated all the other equa-
tions excluding those that are definitions (e.g., a-j in Appendix A), 
those that are continuous (e.g., Eq. 1-3, Eq. 21-27, Eq. 31-32 and 
Eq. 34-38) and those inequalities lacking an equal sign.   Valida-
tion begins after converting higher-level constructs (such as AFP, 
XRP) to lower-level constructs (such as P) and then converting the 
lower level constructs to rates (Ra-Rd) and counts (xa-xd) for 
submission to Derive.  Validated equations involve one of four 
conditions: Normal (no additional constraint), NI spuriosity 
(b1=0), general standardization [P(C|A) = P(C|~A)] or P(C) stan-
dardization [P(C|A) = P(C|~A) = P(C)]. 
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Appendix A.   2×2 COUNT TABLE IDENTITIES56 
Counts ~E:Non-Case E:Case TOTAL 
~A: Control a b g=a+b 
A: Exposure c d h=c+d 
TOTAL e=a+c f=b+d n=e+f=g+h 

Definitions and Basic Relationships:57 
a. Phi: φ = r ≡ (a d - b c) / w  where w2 = e f g h58 

 φ 2 (d,f,h,n) = (d n – f h)2/[f (n-f) h (n-h)] 
 Phi(E,A) = Phi(A,E) = φ 

b. Margin Fractions:   
Of Cases:   P(E) ≡  f/n  
Of Exposures: P(A) ≡  h/n 

c. Body Fractions:  
Of Cases:  P(E|A) ≡ d/h   P(E|~A) ≡ b/g 
Of Exposures: P(A|E) ≡  d/f   P(A|~E) ≡ c/e 

d. Prevalence:  
Case:      P(E) = P(E|A) P(A) + P(E|~A)[1-P(A)] 
Exposure:  P(A) = P(A|E) P(E) + P(A|~E)[1-P(E)] 

e. Differential Prevalence 
Of Cases:   DP(E:A) ≡ P(E|A)-P(E|~A);  
Of Exposures: DP(A:E) ≡ P(A|E)-P(A|~E) 

f. Relative Prevalence: 
Of Case   RP(E:A) ≡ P(E|A) / P(E|~A) 
Of Exposure  RP(A:E) ≡ P(A|E) / P(A|~E) 

g. Excess Relative Prevalence  
Of Cases   XRP(E:A) ≡ RP(E:A) – 1  
Of Exposures  XRP(A:E) ≡ RP(A:E) – 1 

h. Relative Lift  
Of Case:   RL(E,A) ≡ P(E|A) / P(E) 
Of Exposure:  RL(A,E) ≡ P(A|E) / P(A) 

i. Attributable Fraction in Group (AFG)59  
Of Cases in Exposure Attributable to Exposure:  
 AFG(E:A) ≡  [P(E|A) - P(E|~A)] / P(E|A) 
Of Exposures in Case Attributable to Case:  
 AFG(A:E) ≡ DP(A:E) / P(A|E) 

j. Attributable Fraction in Population (AFP):  
Of Cases in Population Attributable to Exposure:  
 AFP(E:A) ≡ [P(E) - P(E|~A)] / P(E) 
Of Exposures in Population Attributable to Case:  
 AFP(A:E) ≡ [P(A) - P(A|~E)] / P(A)  

For more relationships (e.g., Odds Ratio), see Schield and Burnham 
(2002).        

                                                           
56 Over-specified equations allow inconsistent inputs. 
57 Lower case indicates counts; upper case indicates ratios. 
58  X 2  = Σ[(actual value - expected value) 2 / expected value] = n φ 2  
59 The term ‘group’ includes both exposure and control groups and 

case and non-case groups. 

Identities Using Existing Factors56 
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A2b XRP(E:A)/[1-P(E|A)] = XRP(A:E)/[1-P(A|E)] 

A3a XRP(E:A) ≡ RP(E:A) – 1 = DP(E:A)/P(E|~A) 
A3b AFG(E:A) = DP(E:A)/P(E|A)= 1-P(E|~A)/P(E|A) 
A3c AFG(E:A) = XRP(E:A) P(E|~A) / P(E|A) 

A4 [XRP(E:A)/RP(E:A)] / [XRP(A:E)/RP(A:E)] 
  = [1-P(E)]/[1-P(A)] 

A5a AFP(E:A)=P(A) AFG(E:A) /{1-[1-P(A)]AFG(E:A)}
  = P(A) XRP(E:A) / [P(A) XRP(E:A)+1] 
A5b  AFG(E:A)=AFP(E:A)/{P(A)+ [1-P(A)]AFP(E:A)} 
 = P(A) XRP(E:A) /{[P(A) XRP(E:A)+1]P(A|E)} 

A6 P(E|A)/P(E)= P(A|E)/P(A) = RL(E,A) = RL(A,E) 
     Bayes Rule Comparison 

A7 AFG(E:A)/AFG(A:E) = [1-P(E)]/[1-P(A)] 

 

Identities Involving Phi.     Some are over-specified. 
A8   a = (e g + ϕ w)/n   b = (f g  -  ϕ w)/n 
  c = (e h  - ϕ w)/n     d = (f h + ϕ w)/n 
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A15     φ 2= AFP(E:A) AFP(A:E) = DP(E:A) DP(A:E) 

                                                           
60 Note that the right-hand term, [P(E) - P(E|~A)]/P(E), is AFP(E:A). 
61 When squared and multiplied by n, this is a test for independence.   
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Appendix B:  DISCRETE DATA SUMMARY 
The data values involving the three binary variables 

E, A and C are simply counts within the various catego-
ries indexed by the associated index values: A, ~A, C, 
~C, E and ~E.  The data is completely specified by the 
8 body counts or by various ratios from which one can 
obtain these 8 body counts.  Figure 20 shows the faces 
of the categorical cube for binary variables. 
Figure 20: Categorical Data Cube Faces for A, C & E 
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A useful set of ratios involves four rates and four 

weights.  The four rates are  
B1.  Ra = P(E|~A,~C) = n(E,~A,~C) / n(~A,~C) 
  Rb = P(E|~A,C) = n(E,~A,C) / n(~A,C) 
  Rc = P(E|A,~C) = n(E,A,~C) / n(A,~C) 
  Rd = P(E|A,C) = n(E,A,C) / n(A,C).  

Four associated weights are given by 
B2  Xa = n P(~A,~C),  Xb = n P(~A,C),  
  Xc = n P(A,~C),    Xd = n P(A,C).62 
As expected, the sum of these four weights is n. 

From the four rates and weights, one can obtain the 
counts in any of the eight body cells. 
B3. n(E,~A,~C) = Ra Xa,      n(~E,~A,~C) = (1-Ra)Xa, 

n(E,A,~C) = Rb Xb,       n(~E,A,~C) = (1-Rb)Xb, 
n(E,~A,C) = Rc Xc,      n(~E,~A,C) = (1-Rc)Xc, 
n(E,A,C) = Rd Xd,      n(~E,A,C) = (1-Rd)Xd. 

As expected, the sum of the eight body cell counts is n. 

From the weights in B2, one gets these prevalences. 
B4. P(C|A) = Xd/(Xc+Xd),  P(C|~A) = Xb/(Xa+Xb). 
 P(A|C) = Xd/(Xb+Xd), P(A|~C) = Xc/(Xc+Xa). 
 P(C) = (Xb+Xd)/n,  P(A) = (Xc+Xd)/n. 

From these four rates and weights, one can obtain 
various weighted averages: 
B5. P(E|A) = (Rd Xd + Rc Xc) / (Xd+Xc),     
 P(E|~A) = (Rb Xb + Ra Xa) / (Xb+Xa),    
 P(E|C) = (Rd Xd + Rb Xb) / (Xd+Xb),    
 P(E|~C) = (Rc Xc + Ra Xa) / (Xc+Xa).    
A more interesting set of coordinates involves the total 
count and a series of orthogonal ratios involving per-
                                                           
62 P(A) = [P(E)-P(E|~A)] / [P(E|A)-P(E|~A)] 

     = [P(C)-P(C|~A)] / [P(C|A)-P(C|~A)] 
P(C) = [P(E)-P(E|~C)] / [P(E|C)-P(E|~C)] 
     = [P(A)-P(A|~C)] / [P(A|C)-P(A|~C)] 

pendicular binary cuts in the 2x2x2 cube.  The first cut 
separates A and ~A with P(A) as the ratio of interest.  
The second cut separates C from ~C with P(C|A) and 
P(C|~A) as the two ratios of interest.  The third cut 
separates E from ~E with the four ratios (Ra, Rb, Rc 
and Rd) as shown above.  The total count and these 
seven ratios completely specify the eight counts.  
B6. P(E|A) = Rd P(C|A) + Rc[1-P(C|A)] 

P(E|~A) = Rb P(C|~A) + Ra[1-P(C|~A)] 
P(E) = P(E|A) P(A) + P(E|~A)[1-P(A)] 

Given these ratios as summaries of the underlying data, 
general identities such as these can be derived:  
B7. DP(E:A) = DP(C:A)  DP(E:C) +  

[P(E|A) - P(E|C) P(C|A) - P(E|~C) 
P(~C|A)]/P(~A) 

B8.   DP(E:A) = DP(C:A) DP(E:C)  
+ {[P(C|A)(Rd-Rb)P(C|~A) / P(C)]}  
+ {[1-P(C|A)](Rc-Ra)[1-P(C|~A)] / [1-P(C)]} 

B9. DP(E:A) = {(Rd-Rb)P(C) + (Rc-Ra)[1-P(C)]}  
  + DP(C:A) {(Rd-Rc)[1-P(A)]+(Rb-Ra)P(A)} 
Note the association between B8 and the Lazarsfeld 
accounting formula.  See Lazarsfeld (1961). 

Table X: Cross-prevalence between A and C 
Table X Non-C C TOTAL 
Non-A Xa Xb Xa+Xb 

A Xc Xd Xc+Xd 
TOTAL Xa+Xc Xb+Xd n 

Table R: Rate of E classified by A and C. 
Table R Non-C C TOTAL 
Non-A Ra Rb P(E|~A) 

A Rc Rd P(E|A) 
TOTAL P(E|~C) P(E|C) P(E) 

Table E: Distribution of E by A and C. 
Table E Non-C C TOTAL 
Non-A Ea=Ra Xa Eb=Rb Xb Ea+Eb 

A Ec=Rc Xc Ed=Rd Xd Ec+Ed 
TOTAL Ea+Ec Eb+Ed Ea+Eb+Ec+Ed 

Note that this paper does not include a comprehensive 
analysis of, or treatment for, P(E|~A) = 0 or P(E|A) -
P(E|~A) = 1.  

Appendix C:  RATE DATA CUBE 
To model this data, the values of variables A, C and E 

are treated as continuous. Their extreme values (A and 
~A) are 0 and 1.  See Figure 21.  In the A-C plane, 
location 0, 0 is ~A, ~C.  Instead of having a pair of data 
points (at E = 0 and E = 1) for each of the four corners, 
each pair is replaced by its rate as defined in the previ-
ous appendix. E.g., Rd = P(E|A,C) 
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Figure 21: 3D Rate Data Cube with Non-Planar Data 
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Noteworthy values of C are 0, P(C|~A), P(C), P(C|A) 
and 1.  As shown in Figure 21, P(E|A) is a weighted 
average of Rc and Rd:  P(E|A) = Rc[1-P(C|A)] + Rd 
P(C|A) = Rc + (Rd-Rc)P(C|A). 

Appendix D:  NON-INTERACTIVE MODEL 
A linear non-interactive regression model involving 

two predictors is: 
D1. E(A,C) = b0 + b1A + b2C.  
Coefficients are obtained by minimizing OLS variance.  
These coefficients can have many forms.   

(1) One form involves rates and weights. Let b3 indi-
cate non-planarity where b3=Rd-Rc-Rb+Ra.  
Let D1 = Xa[Xb(Xc+Xd)+(Xc Xd)]+(Xb Xc Xd), 
D2a. b0 =   Ra   -   (b3 Xb Xc Xd)/D1, 
D2b. b1 = (Rc-Ra) + [b3 Xb(Xa+Xc)Xd]/D1, 
D2c. b2 = (Rb-Ra)+[b3 Xc(Xa+Xb)Xd]/D1. 

Under cross-A rate equality, Ra = Rc and Rd = Rb.  
So, b3 = 0, b1 = 0, and we have NI spuriosity. 

If the data is planar, b3 is zero, so (Rd-Rb) = (Rc-Ra).   
So, planar data entails cross-A rate difference equality 
(which is different from cross-A rate equality). It also 
entails cross-C difference rate equality: Rd-Rc = Rb-Ra,  
D2d. b0=Ra, b1=Rc-Ra, b2=Rb-Ra for planar data. 
For planar data, the corners of the surface are the rates:  
D2e. E(0,0)=Ra, E(0,1)=Rb, E(1,0)=Rc, E(1,1)=Rd.  

(2) Another form of the coefficients involves the ra-
tios derived from the face values in Figure 20.    
D3. D2 = 1 – {[P(A|C)-P(A|~C)][P(C|A)-P(C|~A)]}  
 D2 = 1 – [DP(A:C) DP(C:A)] 
D3a. b0 = P(E) - {[P(E|A)-P(E|~A)]P(A|~C) +  

[P(E|C)-P(E|~C)]P(C|~A)}/D2 
b0 = P(E) - [DP(E:A) P(A|~C) + 

DP(E:C) P(C|~A)]/D2 
D3b. b1 = {[P(E|A) - P(E|~A)]  

- [P(C|A) - P(C|~A)][P(E|C) - P(E|~C)]}/D2 
 b1 = {DP(E:A) - [DP(C:A) DP(E:C)]}/D2 
D3c. b2 = {[P(E|C) - P(E|~C)]  

- [P(E|A) - P(E|~A)][P(A|C) - P(A|~C)]}/D2 

 b2 = {DP(E:C) - [DP(E:A) DP(A:C)]}/D263,64 
The following can be derived from these equations: 
D4a. P(E|A) = E[A=1, C=P(C|A)]   

P(E|~A) = E[A=0, C=P(C|~A)] 
D4b. P(E|C) = E[A=P(A|C), C=1]  

P(E|~C) = E[A=P(A|~C), C=0] 
D4c. P(E) = E[A=P(A), C = P(C)] 
Thus the regression plane contains the lines connecting 
P(E|A) with P(E|~A) and P(E|C) with P(E|~C) as 
shown in Figure 22.  The point at which these two lines 
intersect has P(E|A,C) = P(E).  Not all ratios in cate-
gorical space lie on the surface of a given model: Rd = 
P(E|A,C) ≠ E(A=1,C=1).  All ratios in categorical 
space will lie on this regression plane under restrictive 
conditions such as when the confounder has no associa-
tion with the predictor, RP(A|C) = 1 and RP(C|A) = 1.65  
Figure 22: Two Lines Determine NI Regression Plane 

P(E|~A) to P(E|A) and P(E|~C) to P(E|C)

0,0

1,0

Ra

Rb

Rc

Rd

P(E|~A)

P(C|~A)

P(E|A)

P(C|A)

C: Confounder.

E = Effect

P(E|C)

P(E|~C) P(A|C)

P(A|~C)
0,1

1,1P(E) at P(C), P(A)A: Associated

The four corners of the planar surface are:  
D5a. E(0,0) = P(E) – {P(A|~C)[P(E|A)-P(E|~A)]  

+P(C|~A)[P(E|C)-P(E|~C)]}/D2 
E(0,0) = P(E) – {P(A|~C) DP(E:A)  

+P(C|~A) DP(E:C)}/D2 

D5b. E(0,1) = P(E) – {P(A|C)[P(E|A)-P(E|~A)]  
- [1-P(C|~A)][(P(E|C)-P(E|~C))]}/D2 

E(0,1) = P(E) – {P(A|C) DP(E:A)  
- [1-P(C|~A)][DP(E:C)]}/D2 

D5c. E(1,0) = P(E)+{[1-P(A|~C)][P(E|A)-P(E|~A)]  
–P(C|A)[P(E|C)-P(E|~C)]}/D2, 

E(1,0) = P(E)+{[1-P(A|~C)]DP(E:A) 
     - P(C|A) DP(E:C)}/D2 

D5d. E(1,1) = P(E) + {[1-P(A|C)][P(E|A)-P(E|~A)] 
+ [1-P(C|A)][P(E|C)-P(E|~C)]}/D2 

                                                           
63 b2(E|A,C) is obtained from b1(E|A,C) by exchanging A with C, 

P(A) with P(C), P(E|A) with P(E|C) and P(C|A) with P(A|C). See 
D3b & D3c. 

64 If b1(E|A,C) = 0, then DP(E:A)=DP(E:C) DP(C:A), so from D3c, 
b2(E|A,C) = [DP(E:C)-DP(E:C) DP(C:A) DP(A:C)]/D2 = 
DP(E:C)[1-DP(C:A) DP(A:C)]/D2 = DP(E:C) = b2(E|C). 

65 If RP(C:A)=1 and RP(A:C)=1, then b0=P(E|~A)+P(E|~C)-P(E), 
b1=DP(E:A) and b2=DP(E:C) so E(0,0)=P(E|~A)+P(E|~C)-P(E), 
E(0,1)=P(E|C)+P(E|~A)-P(E), E(1,0)=P(E|A)+P(E|~C)-P(E) and 
E(1,1)=P(E|A)+ P(E|C)-P(E). If b3 = 0 then Ra = E(0,0), Rb = 
E(0,1), Rc = E(1,0) and Rd = E(1,1).  If P(E|A)=P(E|~A) the asso-
ciation is trivial and reversal is meaningless. 
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E(1,1) = P(E) + {[1-P(A|C)]DP(E:A) 
+ [1-P(C|A)]DP(E:C)}/D2 

D6a P(E|C) = E(0,1) + P(A|C)[E(1,1) – E(0,1)]. 
D6b. P(E|~C) = E(0,0) + P(A|~C)[E(1,0) – E(0,0)]. 
A partial test of the validity of these formulae is to 
nullify the association between the predictor and the 
confounder: RP(C:A) = 1 and RP(A:C) = 1.66 

Appendix E:  FORMS OF SLOPE: b1(E|A,C) 

There are many form of the slope, b1(E|A,C).  The first 
form involves differences of double ratios. 

E1a. 
)]:():([1

)]:():([):(
1 CADPACDP

CEDPACDPAEDP
b

−

−
= .  

E1b Let K1 = 1/[1-DP(C:A)DP(A:C)]. 
E1c b1 = K1{DP(E:A)-[DP(C:A)DP(E:C)]} 
Note that K1 is always positive.  

The second form involves the attributable fraction in 
the population which is closely related to φ. 

E2a 
)]}:():([1){(

)]:():():()[(

1 CADPACDPAP

CEAFPACAFPAEAFPEP
b

−

−
= . 

E2b Let K2 = P(E)/{P(A)[1-DP(C:A)DP(A:C)]} 
E2c b1(E|A,C)=K2[AFP(E:A)-AFP(C:A)AFP(E:C)] 

Note that K2 = P(E)K1/P(A) so K2 > 0. 

The third and fourth forms involve double ratios.   

E3a. Double-ratio form with P(C|~A) in numerator: 

]1):()(][1):()()][:():(1[
)}:():()|~(]1):()|~()[:(){(

1 ++−
−+

=
CEXRPCPAEXRPAPCADPACDP

CEXRPACXRPACPCEXRPACPAEXRPEPb
 

E3b. Let K3= P(A) K2 / 
{[P(A)XRP(E:A)+1][P(C)XRP(E:C)+1]} 

E3c. ]1):( )|~()[:({3),|(1 += CEXRPACPAEXRPKCAEb  
)]}:( ):( )|~([ CEXRPACXRPACP−  

E4a. Double-ratio form, P(A) and P(C) in numerator: 

]1):()(][1):()(][1):()()][:():(1[
)}:():()(]1):()():()()[:(){(

1 +++−
−++

=
CEXRPCPAEXRPAPACXRPAPCADPACDP

ACXRPCEXRPCPCEXRPCPACXRPAPAEXRPEP
b

E4b. Let K4 = P(E)/Denominator 
E4c. b1(E|A,C) = -K4{[P(C) XRP(E:C) XRP(C:A)] - 

XRP(E:A)[P(C) XRP(E:C)+1+P(A) XRP(C:A)]} 

Cases with zero denominators are ignored.  Non-zero 
denominators are always positive when XRP(C:A), 
XRP(E:C) and XRP(E:A) are positive. 

Equations E1 through E4 are the basis for F1 through 
F4.  Cases with zero denominators are ignored.  Non-

                                                           
66  If RP(C:A)=1 and RP(A:C)=1,  
 E(0,0) = P(E) - {P(A)DP(E:A) + P(C)DP(E:C)},  
 E(0,1) = P(E) - {P(A)DP(E:A)-[1-P(C)]DP(E:C)}.   
 E(1,0) = P(E)+{[1-P(A)]DP(E:A)-P(C)DP(E:C)},  
 E(1,1) = P(E)+{[1-P(A)]DP(E:A)+[1-P(C)]DP(E:C)}.   
The form in footnote 65 is equivalent but simpler. 

zero denominators are always positive when RP(C:A), 
RP(E:C) and RP(E:A) are greater than one. 

Appendix F: NON-INTERACTIVE SPURIOSITY 
I.   THREE DOUBLE RATIOS PER EQUATION67 
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F3d. Subtracting F3a from F3b eliminates XRP(C:A): 
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II. Two DOUBLE RATIOS PER EQUATION 
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III. EQUAL SLOPES 
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IV. OTHER CONDITIONS (NOT SHOWN ABOVE) 
F10. ):()|()|~()|( CEDPACPCEPAEP +=  
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67  F1, F5, F8 and F12 have two non-A ratios. All others have more. 
68 DP(X:Y)=P(X) XPR(X:Y)/[P(Y) XRP(X:Y)+1]=AFP(X:Y) 

P(X)/P(Y), where X & Y are any of E, A and C.  Application of 
these identities to F1 produces F2 and F3a.  
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F13. 
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F14.    This equates the whole with the indirect effect. 
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APPENDIX G:  EXPECTED RATIOS 
In this Appendix, relationships are worked out two 
ways.  First, by treating the standard value as a vari-
able, C.  There is no rule saying that standardization 
must be done using the common prevalence, P(C).  
Second by standardizing to the common prevalence, 
P(C).  This gives both subgroups the same mixture as 
the combined group so P(C|A) = P(C|~A) = P(C).   
EXP{Ratio|S} indicates this is the expected value of the 
ratio when standardized: P(C|A) = P(C|~A) = P(C).  

G1.   E(A,C) = P(E) + b1[A-P(A)] + b2[C-P(C)]69 

G2a. P(E|A) = E[A=1, C=P(C|A)] 
G2b. P(E|A) = P(E) +b1[1-P(A)] + b2[P(C|A)-P(C)] 
G2c. EXP{P(E|A)|S} = P(E) + b1[1-P(A)]  

G3a. P(E|~A) = E[A=0, C=P(C|~A)] 
G3b. P(E|~A) = P(E) + b1[0-P(A)] +b2[P(C|~A)-P(C)] 
G3c. EXP{P(E|~A)|S} = P(E) - b1 P(A) 

G4a.  EXP{P(E)|S} = EXP{P(E|A)|S}P(A) 
     + EXP{P(E|~A)|S}[1-P(A)] 
G4b.  EXP{P(E)|S} = {P(E) +b1 [1-P(A)]} P(A)  

    + {P(E) - b1 P(A)} [1-P(A)] 
G4c. EXP{P(E)|S} = P(E) 

G5a. P(E|A)-P(E|~A) =  
  {P(E) + b1[1-P(A)] + b2[P(C|A)-P(C)]}  

 - {P(E) + b1[0-P(A)] + b2[P(C|~A)-P(C)]} 
G5b. P(E|A)-P(E|~A) = b1 + b2[P(C|A)-P(C|~A)]  
G5c. EXP{[P(E|A) – P(E|~A)] | S} = b1 

G6a. EXP{RP(E:A)|S} = EXP{P(E|A)|S}  
       / EXP{P(E|~A)|S}  
G6b. EXP{RP(E:A)|S} 
  = {P(E) + b1[1-P(A)]} / {P(E) - b1 P(A)} 

G6c.  EXP{XRP(E:A) | S} = EXP{[RP(E:A)-1] | S}  
  = {P(E) + b1[1-P(A)]} / [P(E) - b1 P(A)]-1 
G6d. EXP{XRP(E:A)|S} = b1/{P(E) -b1 P(A)}  

G7a. EXP{[P(E|A)/P(E)]|S}  
     = EXP{P(E|A)|S} / EXP{P(E)|S}  
     = {P(E) + b1[1-P(A)]}/P(E) 

G8a. EXP{[P(E) / P(E|~A)]|S} 
    = EXP{P(E)|S}/ EXP{P(E|~A)|S} 
G8b. EXP{[P(E)/P(E|~A)]|S} = P(E)/[P(E) - b1 P(A)] 
                                                           
69 Eq. D1: E(A,C) = b0 + b1 A + b2 C.    

Eq. D4c: P(E) = b0 + b1 P(A) + b2 P(C) 

G9a. EXP{AFP(E:A)|S} 
    = EXP{[[P(E)-P(E|~A)]/P(E)]|S}  
G9b. EXP{AFP(E:A)|S} = b1 P(A)/P(E)  

APPENDIX H:  EXP{[P(E)/P(E|~A)]|S} 
Expanding Eq. G6b using b1 from Eq. E4a gives: 
H1a.   T0 = 1 + T1(T2 + T3 T4 - T3 - T4) where 
H1b. T0 =  1/{P(A) EXP{RP(E:A)|S} + [1-P(A)]} 
H1c. T1 =  1/[1-φ(C,A)2] 
H1d. T2 = 1/{P(A) RP(E:A) + [1-P(A)]} 
H1e.  T3 = 1/{P(C) RP(E:C) + [1-P(C)]} 
H1f.  T4 = 1/{P(A) RP(C:A) + [1-P(A)]} 

H1g. 2]1):()()][(1[

2)]:()[()](1)[(2),(
+−

−=
ACXRPAPCP

ACXRPCPAPAPACφ  

H2a. P(E)/P(E|~A) = P(A) RP(E:A) + [1-P(A)]70 
H2b. P(E)/P(E|~C) = P(C) RP(E:C) + [1-P(C)] 
H2c. P(C)/P(C|~A) = P(A) RP(C:A) + [1 - P(A)]  
H2d. EXP{[P(E)/P(E|~A)] | S} 
    = P(A) EXP{RP(E:A)|S}+[1-P(A)] 
H3a. T0 = EXP{P(E|~A)|S}/P(E) 
H3b. T2 = P(E|~A)/P(E) 
H3c. T3 = P(E|~C)/P(E) 
H3d.  T4 = P(C|~A)/P(C) 

Only T2 depends on P(E|A).  Define K1. 
H4a. K1 = - [1  +  T1(T3 T4 - T3 - T4)]71 
H4b. T0 = (T1 P(E|~A)/P(E)) - K1 
H4c. 1/T0 = 1/[(T1 P(E|~A)/P(E)) - K1] 
H4d. 1/T0 = [P(E)/P(E|~A)]/{T1– [K1 P(E)/P(E|~A)]} 
H4e.  EXP{[P(E)/P(E|~A)]|S}  
  = [P(E)/P(E|~A)]/{T1 – [K1 P(E)/P(E|~A)]} 

Special Cases: 
If K1 = 0, then  
H5a.  EXP{[P(E)/P(E|~A)]|S} = (P(E)/P(E|~A)) / T1 
H5b.  P(A) EXP{RP(E:A)|S}  
  = [[P(A) RP(E:A)+[1-P(A)]]/T1] - [1-P(A)] 
H5c.  EXP{RP(E:A)|S} =  – [1-P(A)]/P(A) 
        + [[RP(E:A)+[1-P(A)]/P(A)]/T1] 

If RP(E:A)=1,  
H7a.  P(A) EXP{RP(E:A)|S} + [1-P(A)] = 1/(T1 - K1) 
H7b.  EXP{RP(E:A)|S}= {[1/(T1-K1)]-[1-P(A)]}/P(A) 

If RP(E:A) = 1, P(A)=1/2 and φ(C,A)=0 so T1=1, then  
H8a.  EXP{RP(E:A)|S} = (1+K1)/(1 - K1) 
EXP{RP(E:A)|S} = 0 if K1= -1, 1 if K1=0 and ∞ if 
K1=1. 

If EXP{RP(E:A)|S} = RP(E:A), then C has no influ-
ence on the RP(E:A) evaluated at C = P(C).  Thus,  

                                                           
70  P(A)[P(E|A)/P(E|~A)]+1-P(A) = {P(A)P(E|A) + P(E|~A) 

[1-P(A)]} / P(E|~A) = P(E)/P(E|~A) 
71  K1 = -{1 + [P(E|C)/P(E) + P(C|A)/P(C) - 1]  

/ [(1-Phi(A,C)2)(P(E|C)P(C|A))/(P(E) P(C))]} 
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H9a  T1 – [K1 P(E)/P(E|~A)]  = 1  From H4e 
H9b  (T1-1)/K1 = P(E)/P(E|~A) 

APPENDIX I:  EXP{RP(E:A)|S} 
Let S be the size of the confounder where P(C) = P(A). 
I1a  Let U = 1/(P(A) S + [1-P(A)]) 
I1b. Let V = 1/(P(A)/S + [1-P(A)]) 
I1c. φ 2(C,A)=[P(A)XRP(C:A)]2/[P(A)XRP(C:A)+1]2 

Lower Limit: Let RP(E:C) = S and RP(C:A) = S. 
I2a. T3 = U = T4.   
Note: I2b from Eq. H4a; I2c from H4e.  
I2b. K1= - [1 + T1(U2-U-U)] = - [1 + (T1 U)(U-2)] 
I2c. EXP{[P(E)/P(E|~A)]|S} = [P(E)/P(E|~A)] 
   / {T1 + [1+ (T1 U)(U-2)][P(E)/P(E|~A)]} 
I2d.  P(A) EXP{RP(E:A)|S}+1-P(A) =   
 [P(A) RP(E:A)+1-P(A)] /  
 {T1+[1+(T1 U)(U-2)][P(A) RP(E:A)+1-P(A)]} 

Upper Limit: Let RP(E:C) = S and RP(C:A) = 1/S.  
I3a. T3 = U, and T4 = V 
I3b. K1 = - [1 + T1(U V – U – V)] 
I3c.  EXP{[P(E)/P(E|~A)]|S} = [P(E)/P(E|~A)] 

 / {T1 + [1+T1(U V - U - V)][P(E)/P(E|~A)]} 
I3d.  P(A) EXP{RP(E:A)|S} + [1-P(A)]   
 = {P(A) RP(E:A) + [1-P(A)]} /{T1+ 
  [1+T1(U V-U-V)][P(A) RP(E:A)+1-P(A)]} 

Special Cases: 
Let P(A) = 0.5: 
I4a. φ 2(C,A) = [RP(C:A)-1]2 / [RP(C:A)+1]2  
I4b. 1-φ 2(C,A) = 4 RP(C:A)/[RP(C:A)+1]2 
I4c. T1 = 1/[1-φ2(C,A)] = [RP(C:A)+1]2/[4 RP(C:A)] 
Lower Limit: 
I5a. T1Low = 1/[1-φ2(C,A)] = [(S+1)2]/ 4S 
I5b.  EXP{RP(E:A)|S} + 1 = {(RP(E:A)+1) 
 /{T1Low + [1+T1Low U(U-2)][(RP(E:A)+1)/2]}} 
Upper Limit: 
I6a. T1High = 1//[1-φ2(C,A)] = [(1/S+1)2]/ (4/S) 
I6b.  EXP{RP(E:A)|S} +1 = (RP(E:A)+1) 
/{T1High + [1 + T1High(U V-U-V)][(RP(E:A)+1)/2]} 

Let P(A) = 0.5 and S = 2 so U = 2/3 and V = 4/3. 
Lower Limit: 
I7a. T1Low = [(S+1)2]/ 4S = 9/8 
I7b. EXP{RP(E:A)|S} + 1 = [RP(E:A)+1]  
 / {(9/8) + [1+(9/8)(2/3)(-4/3)][(RP(E:A)+1)/2]} 
I7c.  EXP{RP(E:A)|S} + 1 = [RP(E:A)+1] (8/9) 
So when RP(E:A) = 2,  
I7d. EXP{RP(E:A)|S} = {3/(9/8)} -1 = (8/3)-1 = 1.67 
Upper Limit: 
I8a. T1High = [(1/S+1)2]/ (4/S) = (9/4)/(4/2) = 9/8 
I8b.  EXP{RP(E:A)|S} +1 = [RP(E:A)+1]  
 / {(9/8) + [1 + (9/8)(8/9-2/3-4/3)][(RP(E:A)+1)/2]} 
I8c.  EXP{RP(E:A)|S} +1 = [RP(E:A)+1]  
  / {(9/8) - (1/4)[(RP(E:A)+1)/2]} 
So when RP(E:A) = 2,  

I8d. EXP{RP(E:A)|S} = {3/[(9/8)-(3/8)]} -1 = 3 
For a size S=2 confounder, the confounder interval for 
RP(E:A) = 2 with P(A) = 0.5 is [1.67, 3.0].    
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