Confounders as Mathematical Objects

MILO SCHIELD

Augsburg College Dept of Business Administration Director, W. M. Keck Statistical Literacy Project

THOMAS V.V. BURNHAM

Cognitive Consulting

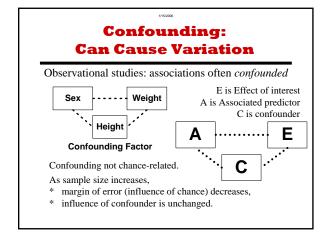
MAA

15 January 2006

Paper 2006SchieldBurnhamMAA.pdf

Slides 2006SchieldBurnhamMAA6up.pdf

www.StatLit.org Schield@Augsburg.edu



Confounder Resistance: Rules of Thumb

Sir Richard Doll: No single study is persuasive unless the lower limit of its 95% confidence level falls above a **threefold** increased risk.

"As a general rule of thumb," says Angell of the New England Journal, "we are looking for a relative risk of **three or more**" before accepting a paper.

Robert Temple, FDA Director of Drug Evaluation, puts it bluntly: "My basic rule is if the relative risk isn't at least **three or four**, forget it."

Problem of Confounding in Epidemiology

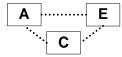
John Bailar, epidemiologist: "There is no reliable way of identifying the dividing line."

Epidemiologists need an abstract description of confounding that can generate confounder significance and confounder intervals for Relative Risk. $RP(E:C) = P(E|C) / RP(E|\sim C)$

This description must handle binary data, be meaningful, useful and easy to understand.

Modeling <u>Spuriosity</u>: A has "no effect" on E

Model relation between 3 binary variables using an ordinary least-squares regression model:



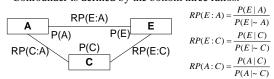
E is Effect of interest A is Associated predictor C is confounder

Non-Interactive model: E(A,C) = bo + b1*A + b2*C

Association between A and E is **spurious** if b1 = 0.

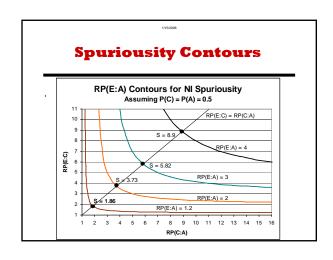
Simplifying: Defining an S Confounder

A, C and E are binary. Top three ratios are observed. Confounder is defined by the bottom three ratios.



Definition: An "**S confounder**" is a binary confounder with P(C:A) = RP(E:C) = S. P(C) = P(A).

An association is "confounder resistant" to a size S confounder if it withstands nullification.



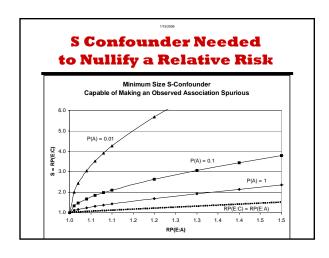
S Confounder Needed to Nullify Relative Risk

Given an observed association, RP(E:A), and a predictor prevalence, P(A), determine the size of the S confounder needed for nullification.

$$\frac{S-1}{[RP(E:A)-1]} = 1 + \sqrt{1 + \frac{1}{P(A)[RP(E:A)-1]}}$$

If P(A) = 0.5 and S = 5, then RP(E:A) = 2.6.

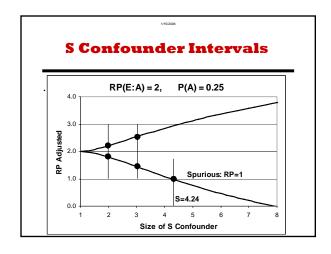
If
$$P(A) = 0.4$$
 and $S = 6$, then $RP(E:A) = 3.1$



Confounder Intervals: Influence of S Confounder

Lower limit: determined by removing the influence of a confounder where RP(C:A) = RP(E:C) = S. Upper limit: determined by removing the influence of a confounder where RP(C:A) = 1/RP(E:C) = 1/S. Given the size of an S confounder, the confounder influence can be determined algebraically and illustrated using a standardization diagram.

For a S confounder of size 2, the confounder interval for RP(E:A) = 2 with P(A) = 0.5 is [1.67, 3.0].



Recommendations

Review/critique Schield & Burnham (2006) MAA paper: Confounders as Mathematical Objects. Copy at www.StatLit.org/pdf/2006SchieldBurnhamMAA.pdf

This 26 page paper is dense: 150 equations with new concepts and new ratio-comparison notation.

In-depth reviews will be acknowledged in the final paper.

If published, this paper will help make confounding a mathematical object. This could open up an entirely new area for statistics and statistical education.