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Types of study
e secondary analysis
® cross-sectional observational study
® retrospective obervational study
® prospective observational study
e (randomized) experiment

Mixtures



Key ideas
e several features (variables) on each study individual
e represent each feature by node of graph

e for any two features
— one response to other as explanatory, or

— on an equal footing



e in graph if variables connected
— joined by directed edge, or

— joined by undirected edge
e variables on equal footing in same box

e absence of edge implies conditional independence, subject to

rules specifying nature of conditioning set



Objective

To develop understanding of potential data-generating process
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Another example

Infectious disease in two species
Causative organism can be genetically typed

Cross-sectional data
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Interpretation

Difficulties of interpretation

How can interpretation be extended?
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A simple stepwise data generating process

2

for a joint density f123

J123 = f1123f23f3
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for a linear system in standardized variables

E(Y1|Y2, Y3) = aY1 —|— 5Y2
E(Y2|Y3) = ~Y3
E(Y5) 0
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Distortions of effects

due to

gg marginalizing over a variable

conditioning on a variable
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Distortion due to under-conditioning
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E(Y1]Y3) = (6 + av)Ys

14



Distortion due to over-conditioning
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With the simple correlation p13 = 0 + oy

E(Y2|Y3, Y1) = (v —{(1—=7%)/(1 — pi5) }apia) Yz + ...
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Distortion due to over-conditioning

(I .
X,
With the simple correlation p13 = 6 + ay
E(Y2|Y3, Y1) = (v —{(1—=7%)/(1 — pi5) }apia) Yz + ...

induced partial dependence in the case v = 0

E(Ys|Ys, Y1) = (—ad/{1 — 62})Y;
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Distortion due to direct confounding
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E(Y1]Y2) = (o + 07)Y2
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To avoid both over- and under-conditioning

regress Y ; only all on all those observed variables
which are in the generating process

directly or indirectly explanatory for Y;
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To avoid direct confounding

of 2<—3

randomly allocate individuals to the levels of Yj
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To check on direct confounding

induce an 27-dashed line into the generating graph

—whenever 2 and 7 have an unobserved common parent
i< Y —j

—or ¢z and 7 have an unobserved common ancestor path

R / N /

Conclude:

no direct confounding of 2—<—7 ifno 2---7 is induced
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But, distortions due to indirect confounding

may be present and severe

— both in observational and in randomized studies

— and in the absence

of direct confounding, of over- and of under-conditioning
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Example

Even direction of the dependence of Y on A could be reversed in

Y, physical QoL U, depressive

after surgery coping

X, physical QoL 2. bodily

O
before surgery _
complaints

V, age
7y

/7

A, diversion

via Y <—U—~Z<—V —~Abeing Y <— ff— [O] <— FF—A
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