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Abstract   Multivariate outcomes are common in studies for causal 
effects, but they are often mis-analyzed.  The critical reason 
leading to their misuse is that even in a randomized experiment 
with only two treatment conditions, there are two potential 
outcomes associated with each measured outcome, but these can 
never be jointly observed.  When there are two measured 
outcomes, one primary and another one that is intermediate in 
some sense, the resulting structure can therefore be very confusing, 
even to great statisticians such as R.A. Fisher.  Two specific 
examples will be used to illustrate the issues using the concept of 
"principal stratification" (Frangakis and Rubin, 2002, Biometrics):  
the first on estimating dose-response when there is noncompliance, 
and the second on separating "direct" and "indirect" causal effects. 

 
 
1. Introduction 
 
 Causal inference is inherently multivariate because causal effects, even just for a single 
experimental unit and only two exposure conditions, involves the implicit comparison of two 
values, the value of the outcome when the unit is exposed to the treatment condition, Y(1), and 
the value of the outcome when the unit is exposed to the control condition, Y(0).  The causal 
effect of the treatment versus control on this unit is the comparison of the potential outcomes 
Y(1) and Y(0), for example, the difference, Y(1) – Y(0).  This formulation in the context of 
randomized experiments and randomization-based inference is due to Neyman (1923) as 
discussed in Rubin (1990), and was extended to nonrandomized studies in Rubin (1974) and to 
Bayesian inference in Rubin (1975,1978).   The general perspective is now often referred to as 
“Rubin’s Causal Model” (RCM) for a sequence of articles written in the 1970s – see Holland 
(1986), Imbens and Rubin (2007). 
 
 In many situations, causal inference is even more multivariate, even with just one 
primary outcome represented by the pair of potential outcomes Y(1), Y(0).  Of particular 
interest, noncompliance with the assigned exposure condition creates another pair of potential 
outcomes, which are intermediate in some sense, as discussed explicitly in Angrist, Imbens, and 
Rubin (1996).  A recent discussion in the context of a double blind randomized trial appears in 
Jin and Rubin (2007), where D(1) is the intermediate potential outcome representing the 
proportion of a prescribed cholesterol-reducing drug taken when assigned to take the drug, and 



d(0) is the intermediate proportion of a placebo taken when assigned to take the placebo.  We 
discuss this example in some detail in Section 2. 
 
 A particularly challenging example of multivariate outcomes occurs when trying to 
describe “direct” and “indirect” causal effects, for example using surrogate markers, such as 
immunogenicity as measured by antibody levels in vaccine trials with human and nonhuman 
primates, as discussed in Rubin (2004).  This type of situation is very tricky to deal with 
correctly, and even the great R. A. Fisher got it wrong, as discussed in detail in Rubin (2005), 
and overviewed here in Section 3.  The framework we use to discuss the two examples is 
“principal stratification” due to Frangakis and Rubin (2002) and is inherently multivariate. 
 
2. Noncompliance and Dose-Response 
 
 For person i in a double-blind placebo-controlled randomized trial, let Yi(1) and Yi(0) be 
cholesterol reduction when assigned treatment and the cholesterol reduction when assigned 
control, respectively, and analogously, let Di(1) and di(0) be the proportion of dose of active drug 
taken when assigned to take the treatment drug, and the proportion of placebo drug taken when 
assigned to take the control, respectively; in this study Di(0) = di(1) = 0 by construction – that is, 
the amount of drug taken when assigned control and the amount of placebo taken when assigned 
treatment are both zero.  Thus, the potential outcomes take values is a four dimensional 
multivariate space of Yi(0), Yi(1), Di(1), di(0) .  The treatment potential outcomes, Yi(1) and 
Di(1), are only observed for units assigned to treatment, whereas the control potential outcomes 
are only observed for units assigned to control. 
 
 Figure 1, originally from Efron and Feldman (1991) [EF], but also reproduced in Jin and 
Rubin (2007), plots Yi(1) versus Di(1) in the treatment group and plots Yi(0) versus di(0) in the 
control group.  Figure 1 reveals a relatively clear monotonely increasing relationship between 
cholesterol reduction and proportion of drug dose taken, as would be expected with a drug 
designed to reduce cholesterol.  However, there also appears to be a mild relationship between 
cholesterol reduction and proportion of placebo taken, which may make little sense until we 
realize that better placebo compliers are probably also better dietary compliers, better exercise 
compliers, etc., and thus the better placebo compliers are doing other things to reduce their 
cholesterol levels.  Thus, di(0) is an important explanatory covariate, which is only observed in 
the control group.  The principal strata are defined by the various values of di(0).  Of importance 
is that, as seen in Figure 2, the distribution of drug compliance, Di(1), is substantially worse than 
the distribution of placebo compliance, di(0), presumably because of negative side effects of the 
active drug, and so we cannot directly infer the missing Di(0) from the observed di(1).  In some 
sense, we want to "subtract" the dose-response curve in the placebo group from the dose-
response curve in the treatment group to uncover the true biological dose-response relationship, 
but how to do this formally and correctly is the key issue in EF and in Jin and Rubin (2007). 
 
 Suppose that di(0) were observed for all units and that the proportion of active drug 
taken, Di(1), was ignorably assigned (Rubin 1978) at some value between zero and di(0); thus, 
we are assuming that the assignment mechanism for Di(0) is “latently ignorable” (Frangakis and  
Rubin 1999), latently because di(0) is missing for those assigned to the treatment condition (i.e., 
the  assignment mechanism would be ignorable if di(0) were observed for all units. Jin and Rubin   
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FIGURE 1:  Observed Dose-Response in the EF Data 

 
 (2007) conduct a Bayesian analysis under the latent ignorable and other modeling assumptions, 
and derive different estimated dose-response curves (i.e., Yi(1) as a function of Di(1)) as 
functions of di(0), where di(0) define various principal strata. 
 
 Four estimated true dose-response curves are given in Figure 3 for four values of placebo 
compliance: a prefect placebo complier, di(0)=1.00; the 75th percentile placebo complier in the 
experiment, di(0)=0.97; the median placebo complier, di(0)=0.89; and the 25th percentile placebo 
complier, di(0)=0.60.  Notice that dose-response is only plotted for active doses less than di(0) 
because, by assumption, no active dose is assigned that is greater than di(0).  The posterior 
medians are represented by the bold lines and 95% posterior intervals by the light lines.  Under 
the assumptions of Jin and Rubin’s model, a very interesting conclusion arises that can be 
illustrated by examining the estimated cholesterol reductions at dose 0.60 for the four types of 
placebo compliers in the figure:  The better the placebo compliance, the less the benefit from 
taking the active drug!  Apparently, the better placebo compliers are already doing other things 
to reduce their cholesterol levels, whereas the worse placebo compliers are not doing so, and so 
they benefit more from the same dose of the active drug. 
 
 Such a conclusion would have been impossible to reach without the multivariate thinking 
that is forced upon us when using potential outcomes and principal stratification.  That is, letting 
Wi indicate the condition assigned, Wi =1   for treatment and  Wi =0  for control,  the reduction 
from the bivariate potential  outcomes [Yi(1),Yi(0)] to the univariate observed outcome, Yobs,i = 
Wi Yi(1) + (1-Wi) Yi(0),  and the reduction from the bivariate potential outcomes [Di(1), di(0)] to 
the univariate observed outcome, Δobs,i = Wi  Di(1) + (1-Wi) di(0), hide the insight revealed in 
Figure 3.  EF (1991) effectively used the reduction to Δobs,i because they assumed Di(1) and di(0)   
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FIGURE 2:  Histograms of Observed Compliances in the EF Data 

 
 

 
FIGURE 3:  Estimated True Dose-Response at Four Values of di(0):  

Posterior Median and Control 95% Interval 
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were a monotone deterministic function of each other, and therefore assumed that Di(1) was 
known from di(0), thereby reducing the four plots in Figure 3 to four points. 
 
3.  Complex Experiments:  “Direct” and “Indirect” Causal Effects 
 
 Now consider the problem of adjusting for a different kind of “concomitant” variable – 
an outcome variable that is not the outcome of primary interest nor a measure of compliance, but 
may be “on the causal pathway” explaining how treatment versus control affects the primary 
outcome variable, Y.  The following discussion is adapted from my Fisher lecture (Rubin, 2005).  
Fisher wrote about the problem of adjusting for such on a concomitant variable in Design of 
Experiments (DOE, Chapter IX) from the first edition in 1935 to the last (8th) edition in 1966 
using the identical language: 
 

In agricultural experiments involving the yield following different kinds of treatments, it 
may be apparent that the yields of the different plots have been much disturbed by 
variations in the number of plants which have established themselves.  If we are satisfied 
that this variation in plant number is not itself an effect of the treatments being 
investigated, or if we are willing to confine our investigation to the effects on yield, 
excluding such as flow directly or indirectly from effects brought about by variations in 
plant number, then it will appear desirable to introduce into our comparisons a correction 
which makes allowance, at least approximately, for the variations in yield directly due to 
variation in plant number itself. 

 
He also discussed such a situation in Statistical Methods for Research Workers (1970, sec. 49.1), 
in a way that was consistent with this previous quotation. 
 
 Fisher’s recommendation was to conduct an analysis of covariance (ANCOVA) of Yobs,i 
on Wi and Cobs,i, where Cobs,i = Wi Ci(1) + (1-Wi) Ci(0).  Essentially, an ANCOVA compares the 
average observed Yi(1) with the average observed Yi(0) for units with a common value of Cobs,i, 
which generally does not estimate a causal effect as we now discuss using two hypothetical 
examples.  Suppose that Tables 1 and 2 represent very large randomized experiments of N 
agricultural plots; the concomitant C is the number of plants established in each plot, the primary 
outcome Y is the total yield in each plot, the treatment is a new fertilizer, and the control is the 
standard fertilizer.  In each experiment, half of the units are randomly assigned to the treatment 
and control conditions. 
 
 The left collection of columns in Table 1 gives the potential outcomes in the first 
experiment.  The first two rows represent those N/2 units with common values of the potential 
outcomes, and so randomly assigning them would result in half being assigned to control, 
represented by the first row, and half being assigned to treatment, represented by the second row, 
and analogously for the second pair of rows.  The resultant observed data are represented in the 
right collection of columns in Table 1.  Each pair of rows corresponds to a “principal stratum,” 
where each principal stratum is defined by common values of Ci(1) and Ci(0), which is 
unaffected by treatment assignment.  The left collection of columns reveal that for all units, there 
is a causal effect of treatment versus control on the concomitant variable, C, of size 1, but there 
is no treatment effect on the primary outcome variable Y for any unit.  Because all units 
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experience a treatment versus control effect on C but no effect on Y, the answer to the question 
of the “direct” effect of treatment on Y, after adjusting for C, seems to be a matter of definition, 
where the obvious definition is zero. 
 
Table 1.  An Example With a Treatment Effect on the Concomitant, C, But No Treatment Effect 

on the Primary Outcome, Y. 
  

Potential outcomes Observed data Fraction of 
population C(1) C(0) Y(1) Y(0) W Cobs Yobs

1/4 3 2 10 10 0 2 10 
1/4 3 2 10 10 1 3 10 
1/4 4 3 12 12 0 3 12 
1/4 4 3 12 12 1 4 12 

 
 
 An examination of the right collection of columns in Table 1, however, reveals that 
conditioning on the observed value of the concomitant, Cobs,i, leads to a contradictory conclusion.   
When Cobs,i = 3, those plots that received the treatment do worse by 2 than those that received 
control (compare the second and third rows in the observed data).  Also in this case, the 
regressions of Yobs,i on Cobs,i in the Wi = 0 and Wi = 1 groups are linear and parallel, with 
constant treatment minus control difference equal to -2.  So the conclusion of Fisher’s 
recommended ANCOVA is that the treatment versus control direct effect on Y (after making 
allowance for any treatment effect on C) is negative!  This clearly seems incorrect, as is revealed 
by an examination of the potential outcomes in Table 1. 
 
 The example in Table 2 illustrates a flaw in Fisher’s proposed solution even when there 
does appear to be a well-defined “direct” treatment versus control effect on Y after controlling 
for C, at least for some units.  The example is similar to the one in Table 1 except that first, there 
is a constant treatment effect on Y of size 1 for all units, and second, for one-third of the units, 
represented by the middle two rows, there is no treatment effect on the concomitant, C.  For the 
other units, the treatment effect on the concomitant is 1.  For the principal stratum where there is 
no treatment effect on the concomitant, the answer to the question about the direct effect of 
treatment seems to be clear:  It is size 1.  Yet here too, Fisher’s advice yields a different and 
incorrect answer, despite the parallel linear regression lines in the Wi =0 and Wi = 1 groups.  The 
ANCOVA of Yobs,i on Wi and Cobs,i implies that the “direct” causal effect of treatment on the 
primary outcome, after accounting for the effect of treatment on the concomitant, is of size -1, 
which is the average Yobs,i for the treated plots with Cobs,i = 3 ( the average Yobs,i in rows 2 and 4, 
i.e., 12) minus the average Yobs,i for the control plots with Cobs,i = 3 (the average Yobs,i in rows 3 
and 5, i.e., 13). 
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Table 2.  An Example With a Constant Treatment Effect on the Outcome, Y, and a “Direct” 
Effect for Units With No Treatment Effect on the Concomitant, C. 

 
Potential outcomes Observed data Fraction of 

population C(1) C(0) Y(1) Y(0) W Cobs Yobs
1/6 3 2 11 10 0 2 10 
1/6 3 2 11 10 1 3 11 
1/6 3 3 13 12 0 3 12 
1/6 4 3 13 12 1 3 13 
1/6 4 3 15 14 0 3 14 
1/6 4 3 15 14 1 4 15 

 
 
4. Discussion 
 
 Causal inference is inherently multivariate because underlying each measured outcome 
variable, there are at least two potential outcomes, only one of which is revealed by the 
assignment mechanism.  With more than one measured outcome, as when we have 
noncompliance or are interested in "direct" and "indirect" effects, there are at least four 
underlying potential outcomes, and understanding their relationships requires clear multivariate 
thinking, which, in my mind, only recently has been adequately clarified through the use of 
principal stratification (Frangakis and Rubin, 2002). 
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