# Mathematics of, for, and as Social Justice 

Priscilla Bremser

May 17, 2008

## Background

First Workshop on the Mathematics of Social Justice
Rob Root, Lafayette College
May 2006

## Second Workshop

P. Bremser, Chawne Kimber

Support from PA/NYCC; Middlebury, Lafayette, W.Chester, Moravian, E. Stroudsburg

## Activities

Module development website
Google Group discussion
Sheila Weaver and Andy Miller: Mini Course, MAA Sectional mtg. Book Chapter

## Mathematics OF Social Justice

Calculus I: Area between curves

- Two teams, purple and green, each with a total of $\$ 100$
- Each person represents $\frac{1}{5}$ of a population (the Purples and the Greens)


## Mathematics OF Social Justice

Calculus I: Area between curves

- Two teams, purple and green, each with a total of $\$ 100$
- Each person represents $\frac{1}{5}$ of a population (the Purples and the Greens)
- Purple team: each member has $\$ 20$
- Green team: members have $\$ 5, \$ 10, \$ 15, \$ 20$, and $\$ 50$, respectively
- As we move from left to right, we keep track of the cumulative wealth


## Mathematics OF Social Justice

Calculus I: Area between curves

- Two teams, purple and green, each with a total of \$100
- Each person represents $\frac{1}{5}$ of a population (the Purples and the Greens)
- Purple team: each member has $\$ 20$
- Green team: members have $\$ 5, \$ 10, \$ 15, \$ 20$, and $\$ 50$, respectively
- As we move from left to right, we keep track of the cumulative wealth
- Purple: \$20, \$40, \$60, \$80, \$100


## Mathematics OF Social Justice

Calculus I: Area between curves

- Two teams, purple and green, each with a total of \$100
- Each person represents $\frac{1}{5}$ of a population (the Purples and the Greens)
- Purple team: each member has $\$ 20$
- Green team: members have $\$ 5, \$ 10, \$ 15, \$ 20$, and $\$ 50$, respectively
- As we move from left to right, we keep track of the cumulative wealth
- Purple: \$20, \$40, \$60, \$80, \$100
- Green: $\$ 5, \$ 15, \$ 30, \$ 50, \$ 100$


## Mathematics OF Social Justice

Calculus I: Area between curves

- Two teams, purple and green, each with a total of $\$ 100$
- Each person represents $\frac{1}{5}$ of a population (the Purples and the Greens)
- Purple team: each member has $\$ 20$
- Green team: members have $\$ 5, \$ 10, \$ 15, \$ 20$, and $\$ 50$, respectively
- As we move from left to right, we keep track of the cumulative wealth
- Purple: \$20, \$40, \$60, \$80, \$100
- Green: \$5, \$15, \$30, \$50, \$100
- Purple as fraction of $\$ 100: \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{5}{5}=1$


## Mathematics OF Social Justice

Calculus I: Area between curves

- Two teams, purple and green, each with a total of $\$ 100$
- Each person represents $\frac{1}{5}$ of a population (the Purples and the Greens)
- Purple team: each member has $\$ 20$
- Green team: members have $\$ 5, \$ 10, \$ 15, \$ 20$, and $\$ 50$, respectively
- As we move from left to right, we keep track of the cumulative wealth
- Purple: \$20, \$40, \$60, \$80, \$100
- Green: \$5, \$15, \$30, \$50, \$100
- Purple as fraction of $\$ 100: \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{5}{5}=1$
- Green as fraction of $\$ 100: \frac{1}{20}, \frac{3}{20}, \frac{6}{20}, \frac{1}{2}, 1$


## Mathematics OF Social Justice

Lorenz curves: Cumulative wealth (vertical) as a function of cumulative population.


## Mathematics OF Social Justice

To measure how far Green strays from equal distribution, consider the green area.


## Mathematics OF Social Justice

The Gini Index (or Gini Coefficient) is the ratio of the green area to the area of the triangle. Actually the area of the triangle is $\frac{1}{2}$, so we have
$2 \int_{0}^{1}(x-L(x)) d x$,
where the Lorenz curve is represented by the function $L(x)$.
A low Gini Index means a distribution close to uniform.
See Wikipedia (really!), Gini Coefficient, for pros and cons.

## Mathematics OF Social Justice

Lorenz curves measuring energy consumption:


## Mathematics OF Social Justice

## Mathematics for Understanding Criminal Justice Issues

A course intended to give an overview of topics in discrete mathematics together with their applications to criminal justice issues. Developed by Mike Olinick and others at MSJ2.

Mathematical topics include set theory, probability, counting principles, Markov chains, decision theory, and difference equations.

Applications include reliability of eyewitness testimony and lie-detector tests, measuring recidivism, Should you accept a plea-bargain offer?, and forecasting future prison populations.

## Mathematics OF Social Justice

Prisoners on death row by race, 1968-2005


## Mathematics OF Social Justice

Prisoners on death row by race, 1968-2005


UNITED STATES POPULATION BY RACE 2005

|  | Estimate |
| :--- | ---: |
| Total: | $288,378,137$ |
| White alone | $215,333,394$ |
| Black or African American alone | $34,962,569$ |
| American Indian or Alaska Native alone | $2,357,544$ |
| Asian alone | $12,471,815$ |
| Native Hawaiian/Pacific Islander alone | 397,030 |
| Some other race alone | $17,298,601$ |
| Two or more races | $5,557,184$ |

Source: U.S. Census Bureau, 2005 American Community Survey Available at http://www.census.gov/

## Mathematics FOR Social Justice

## Service-Learning in Mathematics Courses

- Sheila Weaver, UVM

Course: Math and Social Justice, a liberal arts mathematics course Content: financial math, game theory, fair division, probability and statistics Community Partner: Vermont Campaign to End Childhood Hunger Project Round 1: Students generated a data snapshot for each VT county, including \# eligible for food stamps and \# who actually apply.
Project Round 2: Students are finding, e.g., the correlation between percentage of those eligible who actually use food stamps in each town, and distance to nearest state DCF office.

- Ron Buckmire and Angela Gallegos, Occidental College Course: Mathematics, Education, and Access to Power Community Partner: NE Education Strategy Group, esp. Franklin High School, Los Angeles
Project: Tutoring or assisting in Algebra 1


## Mathematics FOR Social Justice

Mathematics for All: A First-Year Seminar

- Fifteen (well, 16) students
- Writing-Intensive
- Advising component

Interviews with students, teachers, parents, administrators
Class session with M.Hock, VT Assessment Director

## Mathematics FOR Social Justice

## Mathematics for All: A First-Year Seminar

- Fifteen (well, 16) students
- Writing-Intensive
- Advising component

Interviews with students, teachers, parents, administrators
Class session with M.Hock, VT Assessment Director

## NECAP: <br> A Parent's Guide

Along with children throughout Vermont, New Hampshire, and Rhode Island, your child takes the NECAP (New England Common Assessment). As graduates of the standardized testing process, we understand the anxiety and confusion associated with testing. We hope that through our guide you gain an understanding of the goals of the NECAP,
the design and makeup of the test, and the reasoning behind your child's participation.

## Mathematics AS Social Justice

Two books:

- Radical Equations: Civil Rights from Mississippi to the Algebra Project by Robert P. Moses and Charles E. Cobb, Jr.
"Math illiteracy is not unique to Blacks the way the denial of the right to vote in Mississippi was. But it affects Blacks and other minorities much, much more intensely, making them the designated serfs of the information age just as the people that we worked with in the 1960s on the plantations were Mississippi's serfs then."


## Mathematics AS Social Justice

Two books:

- Radical Equations: Civil Rights from Mississippi to the Algebra Project by Robert P. Moses and Charles E. Cobb, Jr.
"Math illiteracy is not unique to Blacks the way the denial of the right to vote in Mississippi was. But it affects Blacks and other minorities much, much more intensely, making them the designated serfs of the information age just as the people that we worked with in the 1960s on the plantations were Mississippi's serfs then."
- What the Numbers Say
by Derrick Niederman and David Boyum
"What distinguishes good quantitative thinkers is not their skill with pure mathematics, but rather their approach to quantitative information... we are confident that you already know all the math you need...arithmetic, percentages, fractions, decimals, square roots, and exponents."


## Mathematics and Social Justice - Examples

ScienceDirect - Full Size Image




 Rapid Estimate of Adult Literacy in Medicine; WRAT-3, Wide Range Achievement Test, edition 3.

## Mathematics and Social Justice - Examples

Figure 18: Proportion of Active Accounts of the Six Largest Card lssuers with Various Interest Rates for Purchases, 2003 to 2005


Souroes GNO analyats of chata roportod by tha ato largasicredi card iseurs.

## Mathematics and Social Justice - Examples

~ㅇ.VERMONT
department of education

## Disaggregated State Results

|  | Reading |  | Math |  | Writing |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Tentad | Level 4 Levol 3 Levi 2 Level 1 | Tentad | Level 4 Level3 Level 2 Level 1 | Tenes | Lerol 4 Levol 3 Levol 2 Leren 1 |
| All Students |  |  |  |  |  |  |
| All Students | 39338 | 17\% 53\% 19\% 11\% | 39347 | 19\% 44\% 19\% 18\% | 13403 | 13\% 35\% 32\% $20 \%$ |
| Primary Race/Ethnicity |  |  |  |  |  |  |
| American Indian or Alaskan Native | 88 | 2\% 39\% $28 \% 31 \%$ | 87 | 3\% 34\% 24\% 38\% | 40 | 0\% 28\% $25 \% 48 \%$ |
| Aslan | 500 | 28\% 52\% 14\% 6\% | 608 | 32\% 44\% $13 \% \quad 11 \%$ | 211 | 27\% 38\% $25 \%$ 10\% |
| Black or African American | 650 | 9\% 42\% 24\% $26 \%$ | 651 | 6\% 31\% 23\% 41\% | 198 | 7\% 28\% 32\% 33\% |
| Native Hawalian or Pacific Islander | 40 | 10\% 72\% 18\% $0 \%$ | 40 | 12\% $57 \% \quad 18 \% \quad 12 \%$ | 11 | 9\% 27\% 64\% 0\% |
| No Primary race/Ethnicity | 621 | 13\% 49\% $23 \% \quad 15 \%$ | 622 | 12\% 38\% $23 \% \quad 28 \%$ | 199 | 9\% $28 \%$ 38\% $26 \%$ |
| White (non-Hispanic) | 37340 | 17\% 53\% 19\% 11\% | 37340 | 19\% 44\% 19\% 17\% | 12744 | 13\% 35\% 32\% $20 \%$ |
| Gender |  |  |  |  |  |  |
| Female | 19222 | 22\% 53\% 17\% $8 \%$ | 19219 | 18\% 45\% 19\% 17\% | 6555 | 18\% 40\% 29\% 12\% |
| Male | 20110 | 12\% 53\% 22\% 14\% | 20129 | 20\% 43\% 19\% 18\% | 6848 | 8\% 29\% 35\% 28\% |
| LEP Status |  |  |  |  |  |  |
| Currently recelving LEP Services | 921 | 12\% 46\% 21\% 21\% | 929 | 15\% 37\% 19\% 29\% | 274 | 12\% 34\% 29\% 25\% |
| LEP All Other Students | 38447 | 17\% 53\% 19\% 11\% | 38448 | 19\% 44\% 19\% 18\% | 13140 | 13\% 35\% 32\% $20 \%$ |
| IEP |  |  |  |  |  |  |
| IEP All Other Students | 34533 | 19\% 57\% 17\% $6 \%$ | 34543 | 21\% 48\% 19\% $12 \%$ | 11674 | 15\% 39\% 33\% 13\% |
| Students with an IEP | 4805 | 1\% 19\% 32\% 48\% | 4805 | 2\% 16\% $22 \%$ \% $0 \%$ | 1740 | 1\% 6\% 28\% 65\% |
| SES |  |  |  |  |  |  |
| Economically Disadvantaged Students | 12338 | 8\% 45\% 27\% 20\% | 12336 | 8\% 37\% 25\% 30\% | 3979 | 6\% 24\% 37\% 33\% |
| SES All Other Students | 27032 | 21\% 56\% 16\% 7\% | 27042 | 24\% 47\% 17\% 12\% | 9435 | 16\% 39\% 30\% 15\% |

[^0]
[^0]:    Level 4 = Proficient with Distinctions Level 3 = Proficient Level 2 = Partially Proficient, Level $1=$ Substantially Below Proficient

