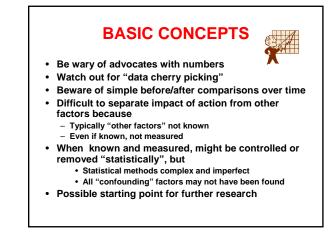


COURSE PLAN

- April 3: Some examples and basic concepts (Gerry (*) and Jane (*))
- April 10: Public opinion polls and election forecasts (Josef)
- April 17: Medical and health studies (Ricki)
- April 24: Business and industrial applications (Necip)
- May 1: Some further examples and wrap-up (Gerry and Jane)

WHAT COURSE WILL NOT COVER

- Accounting numbers
- Various government statistics (e.g., U.S. census)
- Statistical methods



Impact of NY Indoor Clean Air Act	Before and after comparisons	
Impact of Marriage on Longevity	Observational Study, Correlation vs. Cause and Effect Controlled Study, Relative Risk, and Statistical Confidence When bell-shaped curve applies On the average: Mean vs. Media	
Impact of Prayer on Outcome of Bypass Surgery		
Birthday Exercise		
Impact of 2005 Medicare Drug Plan		
Advanced Scout: An NBA Coach's Assistant	Data Mining	

EXAMPLE: IMPACT OF NY STATE CLEAN INDOOR ACT

- WAMC September 27, 2007: "Fewer New Yorkers have been treated for heart attacks since the State's wide-ranging no smoking law took effect four years ago. That's according to the State Health Department which says that since the Clean Indoor Air Act began in July 2003 the number of New Yorkers admitted to the hospital for a heart attack dropped by 8%." Implication: Act reduced heart attack rate by 8%
- Some similar examples:
 - Impact on accident rate of changing speed limits
 - Impact of 1996 welfare reform law (Best 2004, Chapter 6) Impact of change in Daylight Savings Time

EXAMPLE: IMPACT OF MARRIAGE ON LONGEVITY

- Claim: Marriage increases longevity
- Implication: Get (and stay) married to live longer
- Source: Studies reported in Waite and Gallagher (2000): The Case for Marriage: Why Married People are Happier, Healthier and Better off Financially

Ĩ SOME OF THE NUMBERS (from various studies) "The non-married...have higher rates of mortality than the married: about 50% higher among women and 250% higher among men." "Divorce seemed to be as dangerous to a man's health as picking up a pack-a-day cigarettes habit.'

- "For men, staying married boosts the chances of surviving to age 65 from about two out of three, to almost nine out of ten; for women, wedlock ups the likelihood ... from about 80% to more than 90%."
- "Being unmarried can actually be a greater risk to one's life than having heart disease or cancer. For example, having heart disease shortens the average life span by slightly less than six years. But being married chops almost ten years off a man's life."
- "Not being married will shorten a woman's life span by more years than would being married and living in poverty.
- "Almost nine out of ten married men alive at age 48 would still be alive at age 65. By contrast, just six out of every ten married men alive at age 48 would make it...;divorced and widowed men were almost as likely as confirmed bachelors to die before age 65."
- "Nine out of ten married women at age 48 reached age 65, compared to about eight out of ten never-married and divorced womer

THE BIG QUESTION

- "Is really marriage (the reason)...rather than a product of...selection? Perhaps healthier people are more likely to marry ... '
- Problem with observational studies: Other factors may be "confounding" results.
- Some "counteracting" measures
 - Compare otherwise similar people
 - Try to adjust for other factors statistically
- Search for explanation
- Authors conclude "marriage itself moves people to a
- healthier way of life" (e.g. "the virtues of nagging") Are they right?

SOME SIMILAR EXAMPLES

- · An old favorite: Houses with storks nesting have more babies
- · Children with bigger feet spell better (Paulos, 1991)
- Dog owners have lower cholesterol
- · Tall people earn more money

BASIC CONCEPTS

- Don't confuse statistical relationship (correlation) from an observational study with cause and effect
- Observational studies can be improved by
 - Case-control: Matching otherwise similar subjects
 Statistical adjustment for other (identified and measured)
 - subjects
 - and search for explanation
- · Still unlikely to yield definitive results

GOLD STANDARD IS CONTROLLED, RANDOMIZED STUDY

BUT—OBSERVATIONAL STUDIES MIGHT STILL BE USEFUL

- · Provide insights and hypotheses
- Example: Framingham Heart Study – Ongoing since 1948
 - Suggested link between smoking and lung cancer
- · Suggest further research
- Main interest is in prediction (rather than
- understanding), e.g.,
- Epidemiological studies
- Weather forecasting
- Credit scores

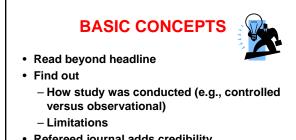
EXAMPLE: IMPACT OF PRAYER ON OUTCOME OF BYPASS SURGERY

- Headline, Daily Gazette, March 31, 2006: "Study finds prayer may make patients worse."
- Basis of results: "\$2.8 million study...in the American Heart Journal (AHJ)."
- Text: "Doctors who followed 1,800 heart bypass patients at six medical centers found that those who knew they were being prayed for suffered higher rates of complications than others who weren't sure."
 Implications:
 - Based on headline: Prayer may make patients worse.
 - Basis of text: *Knowing* someone is praying for you may make patients worse.

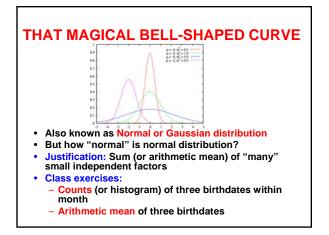
What patients? Coronary artery bypass graft surgery (CABG) How was study conducted? 600 patients randomly assigned to Group 1: Told they might be prayed for and were Group 2: Told they might be prayed for and were not Group 3: Promised they would be prayed for and were Yhat was some study characteristics/limitations (per Internet news release)? Six medical centers "Complications" after CABG surgery Distant prayer by two Catholic and one Protestant prayer group Only patient's first name and last initial provided to person praying Same standardized prayer Stame standardized prayer Group 1 (told they might be prayed for and were): 52% Group 2 (dot they might be prayed for and were): 59%

RELATIVE RISKS

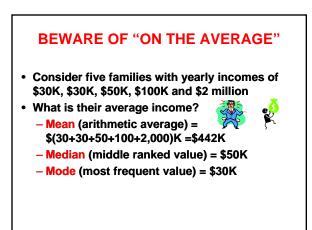
- Definition: Ratio of probability of an event occurring in a "treatment group" versus a "control group"
- Estimated relative risk (of complications after CABG surgery) of being prayed for (after being told "might be prayed for"): 0.52/0.51 = 1.02 (Group 1 vs. Group 2)
- *Estimated relative risk* (of complications after CABG surgery) of being *informed of being prayed for* versus being told *might be* prayed for (and then prayed for): 0.59/0.52 = 1.13 (Group 3 vs. Group 1)
- What is statistical "margin of error?"
- Are results statistically significant?
- · Technical time out


95% CONFIDENCE INTERVAL (Statistical "margin of error")

- Working definition: Range calculated from random sample to include quantity of interest (e.g., relative risk) with 95% probability.
- 95% confidence interval on relative risk *of being prayed for*: 0.92 to 1.15 (from AHJ article)
- 95% confidence interval on relative risk of *being promised prayer*: 1.02 to 1.28 (from AHJ article)
- Result is deemed "statistically significant" (versus "statistical dead heat") if confidence interval *excludes* 1.0
- Want to be *surer*?
- Calculate 99% confidence interval (but increase interval length)
 Increase sample size (and decrease interval length)
- Note: Confidence interval deals only with *statistical* uncertainty


REVISITING ARTICLE HEADLINE

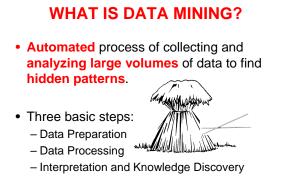
- Headline "Study finds prayers may make patients worse" is misleading.
- More precise headline: "Study finds that prayer may make patients better or worse or not have any impact."
- More realistic headline: "Study finds promising patients prayer may make them worse."



- Refereed journal adds credibility
- Relative risk compares "treatment" versus "control."
- Margin of error (confidence interval) measures
 uncertainty due to sampling (only)

BASIC CONCEPTS

- Justification for normal distribution: Sum (or arithmetic mean) of "many" small independent factors
- Some examples:
 - Points scored by a basketball team
 - Heights of U.S. adults
- IQ scores of 4th graders
 But not everything is sum of many small
- independent factors; e.g., – Life of humans (and many products)
- Life of numans (and many pi – Household income
- nousenoiu income



- are going to save \$1,300 a year"
 Looking at the numbers: Need \$5,137 yearly drug costs to save \$1,300
- President was referring to mean savings
- Median savings much lower

BASIC CONCEPTS

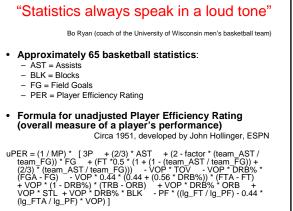
- Make sure that average is defined
- Interpret results accordingly
- Median often more useful than mean

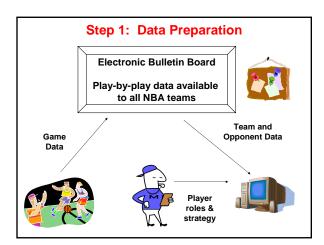
EXAMPLE: DATA MINING IN THE NBA

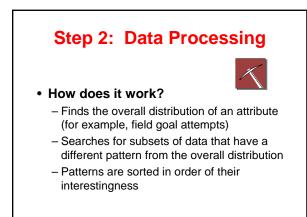
- Advanced Scout: Data mining software to help coaches analyze game data.
- Helps coaches formulate game strategies and assess effectiveness of decisions.
- First used in 1995-96 season.
- Available to ALL National Basketball Association teams.

Play-by-play Sheet

Houston Rockets		Los Angeles Lakers
(12:00) Jur	np Ball Br	rown vs Yao
	11:42	Walton Jump Shot: Missed
	11:41	Brown Rebound (Off:1 Def:0)
	11:29	Bryant Jump Shot: Missed
Alston Rebound (Off:0 Def:1)	11:28	
Yao Jump Shot: Missed	11:06	
	11:05	Turiaf Rebound (Off:0 Def:1)
	10:42	Turiaf Jump Shot: Missed
Yao Rebound (Off:0 Def:1)	10:41	
Battier 3pt Shot: Missed	10:25	
	10:24	Turiaf Rebound (Off:0 Def:2)
	10:08	Walton Jump Shot: Missed


How big is NBA data mine?

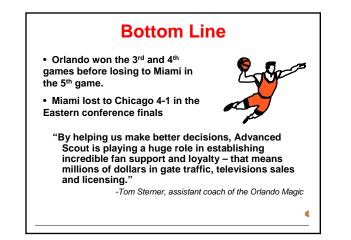

For 1 season:

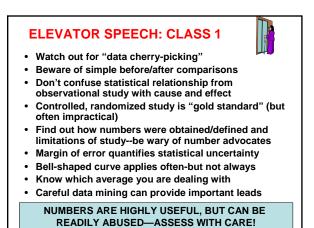


- 30 teams in the NBA
- 15 players per team
- 82 games/team (not counting playoffs)
- ~ 100 points/team/game
- 48 minutes/game (not counting overtime)

For one team's season approximately 41,000 plays

Step 3: Knowledge Discovery


Advanced Scout Displays:


- An Interesting Pattern
- Explanation of why it's interesting

The Coaches:

- Determine the underlying cause of the pattern (often by watching the game video)
- Determine how to incorporate the information into the game strategy

• Baseball:

- A numbers person's dream
- Some reflect variables beyond a player's ability
- No "super-statistic"

Game strategy:

- Baseball: The deliberate walkFootball: Go for 4th down
- Front office strategy: Building the Oakland A's on a shoestring (per M.Lewis: Moneyball)

EXAMPLE: QUANTIFYING THE SUBJECTIVE—COLLEGE RANKINGS

- U.S. News and World Report provides yearly college rankings
- Union ranks 40th among Liberal Arts colleges
- RPI ranks 44th among 262 universities
- · Similar issues arise in ranking
- Other service providers, e.g., hospitals
- Employees
- Movies

CRITERIA

- Peer assessment: 25%
- Graduation and retention rate: 20%
- Student selectivity (SAT/ACT scores, high school standing, acceptance rates): 15%
- Faculty resources (Class size, compensation, top degree, %full-time, student/faculty ratio): 20%
- Financial resources: 20%
- Alumni giving: 5%
- Graduation rate: 5%

- · Questionnaire sent to colleges
- Peer reviews (college presidents, provosts and deans of admission)

ISSUES AND CONCERNS (See Best, 2004)

- What do we mean by "best?"
- Are the right criteria and weights being used?
- · Emphasis on what can be measured
- · Incentive to colleges to "game" the system

BASIC CONCEPTS

- Einstein: Not everything that can be measured is important, and not everything that is important can be measured
- Numerical rankings of
 - Service providers is difficult
 - Products sometimes less difficult
- Need to ask: How were rankings developed?
- · Relate to your value system