Achieving Statistical Literacy in Elementary School Using Current Popular Curricula

Statistics Education in the US

- 1989 NCTM put forth recommendations for school mathematics curriculum in "Curriculum and Evaluation Standards for School Mathematics"
 - Included a "Data Analysis and Probability" strand
- 1990s NSF supported the development of curricula to align with the NCTM recommendations
 - 1996 funded "Investigations in Number, Data, and Space"
 - 1996 funded "Math Trailblazers"
 - Early 1990s funded "Everyday Mathematics"
- 2001 Conference Board of Mathematical Sciences (CBMS) issued "The Mathematical Education of Teachers"
 - Included recommendations for the development of teacher understanding of "Data Analysis, Statistics, and Probability"
- 2005 ASA endorsed the "Guidelines for Assessment and Instruction in Statistics Education: a Pre-K-12 Curriculum Framework" (GAISE) report

NSF Funded Elementary School Curricula

- Investigations
 - TERC in Cambridge Massachusetts
 - K-5th grade
 - Strands: Data Analysis and Probability
 - Uses data to develop concepts
- Trailblazers
 - Teaching Integrated Mathematics and Science (TIMS) project
 - University of Illinois
 - K-5th grade
 - Strands: Data Collection, Averages, Estimation, Accuracy, and Error, the TIMS laboratory method
 - Integrates science with mathematics
- Everyday Mathematics
 - Center for Elementary Mathematics and Science Education at the University of Chicago
 - Pre-K-6th grade
 - Strands: Data and Chance
 - Uses manipulatives and interactive activities

GAISE Report

- Pre-K-12 education should aim to graduate statistically literate population
- A statistically literate person is one who can:
 - Formulate questions
 - Collect data
 - Analyze data
 - Interpret results
- There are 3 different levels of statistical literacy (levels A, B, and C)
- The difference among levels lie in the sophistication of the methods used in the four components above
- Framework identifies the difference between mathematics and statistics
 - Variability
 - Context
 - Use of probability

Ingredients needed to achieve statistically literate population

- Curriculum
- Statistically literate teachers

Research Questions

- Do the NSF funded curricula provide the tools and guidance needed for students to achieve statistical literacy at each level?
- How well do these curricula line up with the framework put forth in the GAISE report?
- What levels of the GAISE report do the curricula achieve?
Achieving Statistical Literacy in Elementary School Using Current Popular Curricula

Methods
- Compare lowest grade common to all the curricula to GAISE report: kindergarten
- Compare highest grade common to all the curricula to GAISE report: fifth grade
- Approach—see where they start and where they end
- Answer the following questions:
 - What GAISE Level is covered?
 - Is the concept of variability introduced?
 - Is statistics introduced using context?
 - Is the role of probability in statistics explicitly explained?
 - Is the curriculum aligned with the GAISE framework?

GAISE Level A Components
- **Formulate Questions**
 - Teachers help student pose questions
 - Students distinguish between statistical solution and fixed answer
- **Collect Data to Answer Questions**
 - Classroom Census
 - Individual-to-individual variability
 - Compare group to group
 - Idea of distribution
 - Describe distribution
 - Observe association between variables
- **Analyze Data**
 - Compare individuals
 - Compare individual to group
 - Compare group to group
 - Idea of distribution
- **Interpret Results**
 - Inference to classroom
 - Acknowledge results may differ with another class
 - Recognize limitation of scope of inference to classroom

Kindergarten Results

<table>
<thead>
<tr>
<th></th>
<th>Investigations</th>
<th>Everyday</th>
<th>Trailblazers</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAISE level covered</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Variability introduced</td>
<td>No</td>
<td>No</td>
<td>Some</td>
</tr>
<tr>
<td>Context used</td>
<td>Some</td>
<td>No</td>
<td>Some</td>
</tr>
<tr>
<td>Formulate questions component</td>
<td>Pose questions</td>
<td>Pose questions</td>
<td>No</td>
</tr>
<tr>
<td>Collect data component</td>
<td>Classroom Census</td>
<td>Classroom Census</td>
<td>Classroom Census</td>
</tr>
<tr>
<td>Analyze data component</td>
<td>Compare individuals, groups, distribution, bar graphs</td>
<td>Compare individuals, groups, distribution, bar graphs</td>
<td>Compare individuals, groups, distribution, bar graphs</td>
</tr>
<tr>
<td>Interpret component</td>
<td>Inference to classroom</td>
<td>Inference to classroom</td>
<td>Inference to classroom</td>
</tr>
</tbody>
</table>

Variability
- GAISE report
- Measurement
- Natural
- Induced
- Missed opportunities in curricula to introduce variability in student lessons
 - Investigations: "Students grab a handful of pattern blocks and make a representation of the types and numbers of pattern blocks they grabbed."
 - Measurement variability could be discussed by having students draw block several times

Role of Probability
- **GAISE report:**
 - "Probability is a tool for statistics"
 - "At Level A, students should understand that probability is a measure of the chance that something will happen. It is a measure of certainty or uncertainty."
- **Everyday**
 - Several activities dedicated to finding probabilities of events
 - Discussed the certainty and uncertainty of events occurring
 - Students are asked to roll a 6-sided die and record their results. Teachers then ask about the likelihood of numbers appearing.
 - Students and teachers pose questions about likelihood
 - Students conduct experiment and collect data in order to answer the question
 - Probability is not introduced in the other two curricula
Achieving a statistically literate population

- All three curricula begin to touch on 4 level A components
- More could be done on all the curricula to introduce fundamental ideas of statistics
 - Variability
 - Role of probability
 - Distinction between math and stats

- These curricula offer students and teachers guidance to meet the GAISE suggestions
- In order for students to become statistically literate using these curricula, teachers must have knowledge about the missing information (variability, distinction, role of probability)
- Trailblazers gives teachers tutorials that attempt to do this
- What type of statistical knowledge do teachers need in order to deliver this material?