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"Eighty percent of success is showing up." 
- Woody Allen 
 
 
“Baseball is ninety percent mental and the other half is physical.” 
- Yogi Berra 

 
 

"Genius is one percent inspiration and ninety-nine percent perspiration." 
- Thomas Edison 
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     Preface 
 
 
You know what a percentage is.  2 out of 4 is 50%.  3 is 25% of 12.  Etc.  But do 
you know enough about percentages?  Is a percentage the same thing as a 
fraction or a proportion?  Should we take the difference between two 
percentages or their ratio?  If their ratio, which percentage goes in the numerator 
and which goes in the denominator?  Does it matter?  What do we mean by 
something being statistically significant at the 5% level?  What is a 95% 
confidence interval?  Those questions, and much more, are what this book is all 
about. 
 
In his fine article regarding nominal and ordinal bivariate statistics, Buchanan 
(1974) provided several criteria for a good statistic, and concluded: “The 
percentage is the most useful statistic ever invented…” (p. 629).  I agree, and 
thus my choice for the title of this book.  In the ten chapters that follow, I hope to 
convince you of the defensibility of that claim. 
 
The first chapter is on basic concepts (what a percentage is, how it differs from a 
fraction and a proportion, what sorts of percentage calculations are useful in 
statistics, etc.)  If you’re pretty sure you already understand such things, you 
might want to skip that chapter (but be prepared to return to it if you get stuck 
later on!). 
 
In the second chapter I talk about the interpretation of percentages, differences 
between percentages, and ratios of percentages, including some common mis-
interpretations and pitfalls in the use of percentages. 
 
Chapter 3 is devoted to probability and its explanation in terms of percentages.  I 
also include in that chapter a discussion of the concept of “odds” (both in favor of, 
and against, something).  Probability and odds, though related, are not the same 
thing (but you wouldn’t know that from reading much of the scientific and lay 
literature). 
 
Chapter 4 is concerned with a percentage in a sample vis-à-vis the percentage in 
the population from which the sample has been drawn.  In my opinion, that is the 
most elementary notion in inferential statistics, as well as the most important.  
Point estimation, interval estimation (confidence intervals), and hypothesis 
testing (significance testing) are all considered. 
 
The following chapter goes one step further by discussing inferential statistical 
procedures for examining the difference between two percentages and the ratio 
of two percentages, with special attention to applications in epidemiology. 
 
The next four chapters are devoted to special topics involving percentages.  
Chapter 6 treats graphical procedures for displaying and interpreting 
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percentages.  It is followed by a chapter that deals with the use of percentages to 
determine the extent to which two frequency distributions overlap.  Chapter 8 
discusses the pros and cons of dichotomizing a continuous variable and using 
percentages with the resulting dichotomy.  Applications to the reliability of 
measuring instruments (my second most favorite statistical concept--see Knapp, 
2009) are explored in Chapter 9.  The final chapter attempts to summarize things 
and tie up loose ends. 
 
There is an extensive list of references, all of which are cited in the text proper.  
You may regard some of them as “old” (they actually range from 1919 to 2009).    
I like old references, especially those that are classics and/or are particularly apt 
for clarifying certain points.  [And I’m old too.] 
 
Enjoy! 
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Chapter 1:  The basics 
 
 
What is a percentage? 
 
A percentage is a part of a whole.  It can take on values between 0 (none of the 
whole) and 100 (all of the whole).  The whole is called the base.  The base must 
ALWAYS be reported whenever a percentage is determined. 
 
Example:  There are 20 students in a classroom, 12 of whom are males and 8 of 
whom are females.  The percentage of males is 12 “out of” 20, or 60%.  The 
percentage of females is 8 “out of” 20, or 40%.  (20 is the base.) 
 
To how many decimal places should a percentage be reported? 
 
One place to the right of the decimal point is usually sufficient, and you should 
almost never report more than two.  For example, 2 out of 3 is 66 2/3 %, which 
rounds to 66.67% or 66.7%.  [To refresh your memory, you round down if the 
fractional part of a mixed number is less than 1/2 or if the next digit is 0, 1, 2, 3, 
or 4; you round up if the fractional part is greater than or equal to 1/2 or if the 
next digit is 5, 6, 7, 8, or 9.]  Computer programs can report numbers to ten or 
more decimal places, but that doesn’t mean that you have to.  I believe that 
people who report percentages to several decimal places are trying to impress 
the reader (consciously or unconsciously).   
 
Lang and Secic (2006) provide the following rather rigid rule: 
  
 “When the sample size is greater than 100, report percentages to no more 
 than one decimal place.  When sample size is less than 100, report 
 percentages in whole numbers.  When sample size is less than, say, 20, 
 consider reporting the actual numbers rather than percentages.” (p. 5) 
 
[Their rule is just as appropriate for full populations as it is for samples.  And they 
don’t say it, perhaps because it is obvious, but if the size of the group is equal to 
100, be it sample or population, the percentages are the same as the numerators 
themselves, with a % sign tacked on.]    
 
How does a percentage differ from a fraction and a proportion? 
 
Fractions and proportions are also parts of wholes, but both take on values 
between 0 (none of the whole) and 1 (all of the whole), rather than between 0 
and 100.  To convert from a fraction or a proportion to a percentage you multiply 
by 100 and add a % sign.  To convert from a percentage to a proportion you 
delete the % sign and divide by 100.  That can in turn be converted to a fraction.  
For example, 1/4 multiplied by 100 is 25%.  .25 multiplied by 100 is also 25%.  
25% divided by 100 is .25, which can be expressed as a fraction in a variety of 
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ways, such as 25/100 or, in “lowest terms”, 1/4.  (See the excellent On-Line Math 
Learning Center website for examples of how to convert from any of these 
part/whole statistics to any of the others.)  But, surprisingly (to me, anyhow), 
people tend to react differently to statements given in percentage terms vs. 
fractional terms, even when the statements are mathematically equivalent.  (See 
the October 29, 2007 post by Roger Dooley on the Neuromarketing website.  
Fascinating.) 
 
Most authors of statistics books, and most researchers, prefer to work with 
proportions.  I prefer percentages [obviously, or I wouldn’t have written this 
book!].                 
 
One well-known author (Gerd Gigerenzer) prefers fractions to both percentages 
and proportions.  In his book (Gigerenzer, 2002) and in a subsequent article he 
co-authored with several colleagues (Gigerenzer, et al., 2008), he advocates an 
approach that he calls the method of “natural frequencies” for dealing with 
percentages.  For example, instead of saying something like “10% of smokers 
get lung cancer”, he would say “100 out of every 1000 smokers get lung cancer” 
[He actually uses breast cancer to illustrate his method].   Heynen (2009) agrees.  
But more about that in Chapter 3, in conjunction with positive diagnoses of 
diseases. 
 
Is there any difference between a percentage and a percent? 
 
The two terms are often used interchangeably (as I do in this book), but 
“percentage” is sometimes regarded as the more general term and “percent” as 
the more specific term.  The AMA Manual of Style and the BioMedical Editor and 
Grammar Girl websites have more to say regarding that distinction.  The 
Grammar Girl (Mignon Fogarty) also explains whether percentage takes a 
singular or plural verb, whether to use words or numbers before the % sign, 
whether to have a leading 0 before a decimal number that can’t be greater than 
1, and all sorts of other interesting things. 
 
Do percentages have to add to 100? 
 
A resounding YES, if the percentages are all taken on the same base for the 
same variable, if only one “response” is permitted, and if there are no missing 
data.  For a group of people consisting of both males and females, the % male 
plus the % female must be equal to 100, as indicated in the above example 
(60+40=100).  If the variable consists of more than two categories (a two-
categoried variable is called a dichotomy), the total might not add to 100 because 
of rounding.  As a hypothetical example, consider what might happen if the 
variable is something like Religious Affiliation and you have percentages reported 
to the nearest tenth for a group of 153 people of 17 different religions.  If those 
percentages add exactly to 100 I would be terribly surprised. 
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Several years ago, Mosteller, Youtz, and Zahn (1967) determined that the 
probability (see Chapter 3) of rounded percentages adding exactly to 100 is  
perfect for two categories, approximately 3/4 for three categories, approximately 
2/3 for four categories, and approximately √6/cπ for c ≥5, where c is the number 
of categories and π is the well-known ratio of the circumference of a circle to its 
diameter (= approximately 3.14).  Amazing! 
 
[For an interesting follow-up article, see Diaconis & Freedman (1979).  Warning: 
It has some pretty heavy mathematics!] 
  
Here’s a real-data example of the percentages of the various possible blood 
types for the U.S.: 

O Positive  38.4%  
A Positive  32.3%  
B Positive    9.4%  
O Negative    7.7%  
A Negative    6.5%  
AB Positive    3.2%  
B Negative    1.7%  
AB Negative     .7%   [Source: American Red Cross website] 

Those add to 99.9%.  The probability that they would add exactly to 100%, by the 
Mosteller, et al. formula, is approximately .52.   

Can’t a percentage be greater than 100? 
 
I said above that percentages can only take on values between 0 and 100.  
There is nothing less than none of a whole, and there is nothing greater than all 
of a whole.  But occasionally [too often, in my opinion] you will see a statistic 
such as “Her salary went up by 200%” or “John is 300% taller than Mary”.  Those 
examples refer to a comparison in terms of a percentage, not an actual 
percentage.  I will have a great deal to say about such comparisons in the next 
chapter and in Chapter 5. 
 
Why are percentages ubiquitous? 
 
People in general, and researchers in particular, have always been interested in 
the % of things that are of a particular type, and they always will be.  What % of 
voters voted for Barack Obama in the most recent presidential election?  What % 
of smokers get lung cancer?  What % of the questions on a test do I have to 
answer correctly in order to pass? 
 
An exceptionally readable source about opinion polling is the article in the Public 
Opinion Quarterly by Wilks (1940a), which was written just before the entrance of 
the U.S. into World War II, a time when opinions regarding that war were diverse 
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and passionate.  I highly recommend that article to those of you who want to 
know how opinion polls SHOULD work.  S.S. Wilks was an exceptional 
statistician. 
 
What is a rate? 
 
A rate is a special kind of percentage, and is most often referred to in economics, 
demography, and epidemiology.  An interest rate of 10%, for example, means 
that for every dollar there is a corresponding $1.10 that needs to be taken into 
consideration (whether it is to your advantage or to your disadvantage). 
 
There is something called “The Rule of 72” regarding interest rates.  If you want 
to determine how many years it would take for your money to double if it were 
invested at a particular interest rate, compounded annually, divide the interest 
rate into 72 and you’ll have a close approximation.  To take a somewhat 
optimistic example, if the rate is 18% it would take four years (72 divided by 18 is 
4) to double your money.  [You would actually have “only” 1.93877 times as 
much after four years, but that’s close enough to 2 for government work!  Those 
of you who already know something about compound interest might want to 
check that.] 
 
Birth rates and death rates are of particular concern in the analysis of population 
growth or decline.  In order to avoid small numbers, they are usually reported 
“per thousand” rather than “per hundred” (which is what a simple percent is).  For 
example, if in the year 2010 there were to be six million births in the United 
States “out of” a population of 300 million, the (“crude”) birth rate would be 6/300, 
or  2%, or 20 per thousand.  If there were to be three million deaths in that same 
year, the (also “crude”) death rate would be 3/300, or 1%, or 10 per thousand. 
 
One of the most interesting rates is the “response rate” for surveys.  It is the 
percentage of people who agree to participate in a survey.  For some surveys, 
especially those that deal with sensitive matters such as religious beliefs and 
sexual behavior, the response rate is discouragingly low (and often not even 
reported), so that the results must be taken with more than the usual grain of salt. 
 
Some rates are phrased in even different terms, e.g., parts per 100,000 or parts 
per million (the latter often used to express the concentration of a particular 
pollutant). 
 
What kinds of calculations can be made with percentages? 
 
The most common kinds of calculations involve subtraction and division.  If you 
have two percentages, e.g., the percentage of smokers who get lung cancer and 
the percentage of non-smokers who get lung cancer, you might want to subtract 
one from the other or you might want to divide one by the other.  Which is it 
better to do?  That matter has been debated for years.   If 10% of smokers get 
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lung cancer and 2% of non-smokers get lung cancer (the two percentages are 
actually  lower than that for the U.S.), the difference is 8% and the ratio is 5-to-1 
(or 1-to-5, if you invert that ratio).   I will have much more to say about differences 
between percentages and ratios of percentages in subsequent chapters.  (And 
see the brief, but excellent, discussion of differences vs. ratios of percentages at 
the American College of Physicians website.) 
 
Percentages can also be added and multiplied, although such calculations are 
less common than the subtraction or division of percentages.  I’ve already said 
that percentages must add to 100, whenever they’re taken on the same base for 
the same variable.  And sometimes we’re interested in “the percentage of a 
percentage”, in which case two percentages are multiplied.  For example, if 10% 
of smokers get lung cancer and 60% of them are men, the percentage of  
smokers who get cancer and are male is 60% of 10%, or 6%.  (By subtraction, 
the other 4% are female.) 
 
You also have to be careful about averaging percentages.  If 10% of smokers get 
lung cancer and 2% of non-smokers get lung cancer, you can’t just “split the 
difference” between those two numbers to get the % of people in general who get 
lung cancer by adding them together and dividing by two (to obtain 6%).  The 
number of non-smokers far exceeds the number of smokers (at least in 2009), so 
the percentages have to be weighted before averaging.  Without knowing how 
many smokers and non-smokers there are, all you know is that the average lung 
cancer % is somewhere between 2% and 10%, but closer to the 2%.  [Do you 
follow that?] 
 
What is inverse percentaging? 
 
You’re reading the report of a study in which there is some missing data (see the 
following chapter), with one of  the percentages based upon an n of 153 and 
another based upon an n of 147.  [153 is one of my favorite numbers.  Do you 
know why?  I’ll tell you at the end of this book.]  You are particularly interested in 
a variable for which the percentage is given as 69.8, but the author didn’t 
explicitly provide the n for that percentage (much less the numerator that got 
divided by that n).  Can you find out what n is, without writing to the author? 
 
The answer is a qualified yes, if you’re good at “inverse percentaging”.  There are 
two ways of going about it.  The first is by brute force.   You take out your trusty 
calculator and try several combinations of numerators with denominators of 153 
and 147 and see which, if any, of them yield 69.8% (rounded to the nearest tenth 
of a percent).  OR, you can use a book of tables, e.g., the book by Stone (1958), 
and see what kinds of percentages you get for what kinds of n’s. 
 
Stone’s book provides percentages for all parts from 1 to n of n’s from 1 to 399.  
You turn to the page for an n of 153 and find that 107 is 69.9% of 153.  (That is 
the closest % to 69.8.)  You then turn to the page for 147 and find that 102 is 
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69.4% of 147 and 103 is 70.1% of 147.  What is your best guess for the n and for 
the numerator that you care about?  Since  the 69.9% for 107 out of 153 is very 
close to the reported 69.8% (perhaps the author rounded incorrectly or it was a 
typo?), since the 69.4% for 102 out of 147 is not nearly as close, and the 70.1% 
is also not as close (and is an unlikely typo), your best guess is 107 out of 153.  
But you of course could be wrong. 
 
What about the unit of analysis and the independence of observations? 
 
In my opinion, more methodological mistakes are made regarding the unit of 
analysis and the independence of observations than in any other aspect of a 
research study.  The unit of analysis is the entity (person, classroom, 
school,…whatever) upon which any percentage is taken.  The observations are 
the numbers that are used in the calculation, and they must be independent of 
one another.   
 
If, for example, you are determining the percentage male within a group of 20 
people, and there are 12 males and 8 females in the group (as above), the 
percentage of male persons is 12/20 or 60%.  But that calculation assumes that 
each person is counted only once, there are no twins in the group, etc.  If the 20 
persons are in two different classrooms, with one classroom containing all 12 of 
the males and the other classroom containing all 8 of the females, then the 
percentage of male classrooms is 1/2 or 50%, provided the two classrooms are 
independent   They could be dependent if, to take an admittedly extreme case, 
there were 8 male/female twin-pairs who were deliberately assigned to different 
classrooms, with 4 other males joining the 8 males in the male classroom.  [Gets 
tricky, doesn’t it?] 
 
One of the first researchers to raise serious concerns about the appropriate unit 
of analysis and the possibility of non-independent observations was  Robinson 
(1950) in his investigation of the relationship between race and literacy.  He 
found (among other things) that for a set of data in the 1930 U.S. Census the 
correlation between a White/Black dichotomy and a Literate/Illiterate dichotomy 
was only .203 with individual person as the unit of analysis (n = 97,272) but was 
.946 with major geographical region as the unit of analysis (n = 9), the latter 
being the so-called “ecological” correlation between % Black and % Illiterate.  His 
article created all sorts of reactions from disbelief to demands for re-analyses of 
data for which something other than the individual person was used as the unit of 
analysis.  It (his article) was recently reprinted in the International Journal of 
Epidemiology, along with several commentaries by Subramanian, et al. (2009a, 
2009b), Oakes (2009), Firebaugh (2009), and Wakefield (2009).  I have also 
written a piece about the same problem (Knapp, 1977a). 
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What is a percentile? 
 
A percentile is a point on a scale below which some percentage of things fall.  
For example, “John scored at the 75th percentile on the SAT” means that 75% of 
the takers scored lower than he did and 25% scored higher.  We don’t even 
know, and often don’t care, what his actual score was on the test.  The only 
sense in which a percentile refers to a part of a whole is as a part of all of the 
people, not a part of all of the items on the test. 
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Chapter 2:   Interpreting percentages 
 
 
Since a percentage is simple to calculate (much simpler than, say, a standard 
deviation, the formula for which has 11 symbols!), you would think that it is also 
simple to interpret.  Not so, as this chapter will now show.  
 
Small base 
 
It is fairly common to read a claim such as “66 2/3 % of doctors are sued for 
malpractice”.  The information that the claimant doesn’t provide is that only three 
doctors were included in the report and two of them were sued.  In the first 
chapter I pointed out that the base upon which a percentage is determined must 
be provided.  There is (or should be) little interest in a study of just three persons, 
unless those three persons are very special indeed. 
 
There is an interesting article by Buescher (2008) that discusses some of the 
problems with using rates that have small numbers in the numerator, even if the 
base itself is large.  And in his commentary concerning an article in the journal 
JACC Cardiovascular Imaging, Camici (2009) advises caution in the use of any 
ratios that refer to percentages.  
 
Missing data 
 
The bane of every researcher’s existence is the problem of missing data.  You go 
to great lengths in designing a study, preparing the measuring instruments, etc., 
only to find out that some people, for whatever reason, don’t have a 
measurement on every variable.  This situation is very common for a survey in 
which questions are posed regarding religious beliefs and/or sexual behavior.  
Some people don’t like to be asked such questions, and they refuse to answer 
them.  What is the researcher to do?  Entire books have been written about the 
problem of missing data (e.g., Little & Rubin, 2002).  Consider what happens 
when there is a question in a survey such as “Do you believe in God?”, the only 
two response categories are yes and no, and you get 30 yeses, 10 nos, and 10 
“missing” responses in a sample of 50 people.  Is the “%yes” 30 out of 50 (=60%) 
or 30 out of 40 (= 75%)?  And Is the “%no” 10 out of 50 (=20%) or 10 out of 40 
(=25%)?  If it’s out of 50, the percentages (60 and 20) don’t add to 100.  If it’s out 
of 40, the base is 40, not the actual sample size of 50 (that’s the better way to 
deal with the problem…“no response” becomes a third category). 
 
Overlapping categories 
 
Suppose you’re interested in the percentages of people who have various 
diseases.  For a particular population the percentage having AIDS plus the 
percentage having lung cancer plus the percentage having hypertension might 
very well add to more than 100 because some people might suffer from more 
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than one of those diseases.  I used this example in my little book entitled 
Learning statistics through playing cards (Knapp, 1996, p. 24).  The three 
categories (AIDS, lung cancer, and hypertension) could “overlap”.  In the 
technical jargon of statistics, they are not “mutually exclusive”. 
 
Percent change 
 
Whenever there are missing data (see above) the base changes.  But when 
you’re specifically interested in percent change the base also does not stay the 
same, and  strange things can happen.  Consider the example in Darrell Huff’s 
delightful book, How to lie with statistics (1954), of a man whose salary was $100 
per week and who had to take a 50% pay cut  to $50 per week because of 
difficult economic times.  [(100-50)/100 = .50 or 50%.]  Times suddenly improved 
and the person was subsequently given a 50% raise.  Was his salary back to the 
original $100?  No.  The base has sifted from 100 to 50.  $50 plus 50% of $50 is 
$75, not $100.  [The illustrations by Irving Geis in Huff’s book are hilarious!]   
There are several other examples in the research literature and on the internet 
regarding the problem of % decrease followed by % increase, as well as % 
increase followed by % decrease, % decrease followed by another % decrease, 
and % increase followed by another % increase.  (See, for example, the 
definition of a percentage at the wordIQ.com website; the Pitfalls of Percentages 
webpage at the Hypography website; the discussion of percentages at George 
Mason University’s STATS website; and the article by Chen and Rao, 2007.) 
 
A recent instance of a problem in interpreting percent change is to be found in 
the research literature on the effects of smoking bans.  Several authors (e.g., 
Lightwood & Glantz, 2009; Meyers, 2009) claim that smoking bans cause 
decreases in acute myocardial infarctions (AMI).  They base their claims upon 
meta-analyses of a small number of studies that found a variety of changes in the 
percent of AMIs, e.g., Sargent, Shepard, and Glantz (2004), who investigated the 
numbers of AMIs in Helena, MT before a smoking ban, during the time the ban 
was in effect, and after the ban had been lifted.  There are several problems with 
such claims, however: 
 
1.  Causation is very difficult to determine.  There is a well-known dictum in 
research methodology that "correlation is not necessarily causation".  As 
Sargent, et al. (2004) themselves acknowledged: 
 
  "This is a “before and after” study that relies on historical 
  controls (before and after the period that the 
  law was in effect), not a randomised controlled trial. 
  Because this study simply observed a change in the 
  number of admissions for acute myocardial infarction, 
  there is always the chance that the change we observed 
  was due to some unobserved confounding variable or 
  systematic bias."  (p. 979) 
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2.  Sargent, et al. found a grand total of 24 AMIs in the city of Helena during the 
six-month ban in the year 2002, as opposed to an average of 40 AMIs in other 
six-month periods just before and just after the ban.  Those are very small 
numbers, even though the difference of 16 is "statistically significant" (see 
Chapters 4 and 5).  They also compared that difference of 16 AMIs to a 
difference of 5.6 AMIs between 18 during and an average of 12.4 before and 
after for a "not Helena" area (just outside of Helena).  The difference between 
those two differences of 16 and 5.6 was also found to be small but "statistically 
significant".  But having a "not Helena" sample is not the same as having a 
randomly comparable group in a controlled experiment. 
 
3.  But to the point of this section, the drop from 40 to 24 within Helena is a 40% 
change (16 "out of" 40); the "rebound" from 24 to 40 is a 66 2/3% change (16 
"out of" the new base of 24).  To their credit, Sargent et al. did not emphasize the 
latter, even though it is clear they believe it was the ban and its subsequent 
rescission that were the causes of the decrease followed by the increase.  
 
[Note:  The StateMaster.com website cites the Helena study as an example of a 
"natural experiment".  I disagree.  In my opinion, "natural experiment" is an 
oxymoron.  There is nothing natural about an experiment, which is admittedly 
artificial (the researcher intervenes), but necessary for the determination of 
causation.  Sargent, et al. did not intervene.  They just collected existing data.] 
 
I recently encountered several examples of the inappropriate calculation and/or 
interpretation of percent change in a table in a newpaper (that shall remain 
nameless) on % increase or decrease in real estate sales prices.  The people 
who prepared the table used [implicitly] a formula for % change of the form (Time 
2 price minus Time 1 price)/ Time 1 price.  One of the comparisons involved a 
median price at Time 1 of $0 and a median price at Time 2 of $72,500  that was 
claimed  to yield a 0% increase, since the calculation of ($72,500 - 0)/ 0 was said 
to be equal to 0.  Not so.  You can't divide by 0, so the percent increase was 
actually indeterminate. 
 
Percent difference 
 
Percent change is a special case of percent difference.  (It’s change if it’s for the 
same things, usually people, across time.)  Both percent difference and the 
difference between two percentages (see Chapter 5) come up all of the time [but 
they’re not the same thing, so be careful!].   
 
The percent difference between two continuous quantities 
 
The percent difference between two continuous quantities is also not the same 
as the difference between two percents.  Cole (2000) suggests that it is better to 
use logarithms when interpreting the percent difference between two continuous 
quantities.  He gives the example of a comparison between the average height of  
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British adult men (177.3 centimeters, which is approximately 69.8 inches, or 
slightly under 5’10”) and the average height of British adult women (163.6 
centimeters, which is approximately 64.4 inches).  The usual formula for finding 
the percent difference between two quantities x1 and x2 is 100(x2 –x1)/x1.  But 
which do you call x1 and which do you call x2?  Working the formula one way 
(with x1 = the average height of the women and x2 = the average height of the 
men), you find that the men are 8.4% taller than the women.  Working the 
formula the other way (with x1 = the average height of the men and x2 = the 
average height of the women) you find that the women are 7.7% shorter than the 
men (the numerator is negative).  Cole doesn’t like that asymmetry.  He suggests 
that the formula be changed to (100loge x2 – 100loge x1), where e = 2.1728… is 
the base of the natural logarithm system.  If you like logarithms and you’re 
comfortable working with them, you’ll love Cole’s article!   
 
Comparisons between percentages that must add to 100 
 
One annoying (to me, anyhow) tendency these days is to compare, by 
subtraction or division, the percentage of support for one candidate for political 
office with the percentage of support for another candidate when they are the 
only two candidates for that office.  For example: “Smith is leading Jones by 80% 
to 20%, a difference of 60 points.”  Of course.  If Smith has 80%, Jones must 
have 20% (unless there are missing data!), the difference must be 60%, and why 
use the word “points”?! 
 
The situation is no better if the comparison takes the form “Smith has four times 
the support that Jones has”.  Again, of course.  The only number that is 
necessary to report is EITHER the 80% for Smith or the 20% for Jones.  
Everything else follows automatically. 
 
Ratios vs. differences of percentages 
 
Consider an example (unlike the previous example) where it is reasonable to 
calculate the ratio of two percentages that don’t have to add to 100.  Suppose 
one-half of one percent of males in a population of 100 million males have IQ 
scores of over 200 and two percent of females in a population of 100 females 
have IQ scores of over 200.   (There are approximately 100 million adult males 
and approximately 100 million adult females in the United States.)  Should we 
take the ratio of the 2% to the .5% (a ratio of 4 to 1) and claim that the females 
are four times as smart?   
 
No.  There are at least two problems with such a claim.  First of all, having a 
number less than 1 in the denominator and a number greater than 1 in the 
numerator can produce an artificially large quotient.  (If the denominator were 0, 
the ratio couldn’t even be calculated, since you can’t divide by 0.)  Secondly, 
does it really matter how large such a ratio is, given that both numerator and 
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denominator are small.  Surely it is the difference between those two 
percentages that is important, not their ratio.   
 
Although in general there are fewer problems in interpreting differences between 
percentages than there are in interpreting ratios of percentages, when subgroup 
comparisons are made in addition to an overall comparison, things can get very 
complicated.  The classic case is something called Simpson’s Paradox 
(Simpson, 1951) in which the differences between two overall percentages can 
be in the opposite direction from differences between their corresponding 
subgroup percentages.  The well-known mathematician John Allen Paulos (2001) 
provided the following hypothetical (but based upon an actual lawsuit) example: 

“To keep things simple, let's suppose there were only two 
departments in the graduate school, economics and psychology. 
Making up numbers, let's further assume that 70 of 100 men (70 
percent) who applied to the economics department were admitted 
and that 15 of 20 women (75 percent) were.  Assume also that five 
out of 20 men (25 percent) who applied to the psychology 
department were admitted and 35 of 100 women (35 percent) were. 
Note that in each department a higher percentage of women was 
admitted. 

If we amalgamate the numbers, however, we see what prompted 
the lawsuit: 75 of the 120 male applicants (62.5 percent) were 
admitted to the graduate school as a whole whereas only 50 of the 
120 female applicants (41.7 percent) were. “ 

How can that be?  The “paradox” arises from the fact that there are unequal 
numbers of men and women contributing to the percentages (100 men and 20 
women for economics; 20 men and 100 women for psychology).  The 
percentages need to be weighted before they are combined into overall figures. 

For additional discussions of Simpson's Paradox, see Malinas (2001) and 
Ameringer, Serlin, and Ward (2009). 

 

Reporting of ranges in percentages across studies 

In his editorial a few years ago, Cowell (1998) referred to an author’s citing of the 
results of a successful surgical procedure as ranging from 43% to 100%, without 
mentioning that the 100% was for one successful procedure performed on one 
patient!  He (Cowell) argued, as I have, that the base must always be given along 
with the percentage. 

 
Other misunderstandings and errors in interpreting percentages 
 
Milo Schield (2000) discussed a number of problems that people have when it 
comes to percentages in various contexts, especially rates.  One example he 
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cites is the claim made by some people that “if X% of A are B, then X% of B are 
A”.  No.  If you don’t believe Schield or me, try various numbers or draw a “Venn 
diagram” for two overlapping circles, A and B.  Schield is the director of the W.M. 
Keck Statistical Literacy Project at Augsburg College in Minneapolis.  He has 
written other interesting articles regarding statistical literacy (or lack of same), 
one of which (Schield, 2005) deals largely with misunderstandings of 
percentages.   He also put on the internet a test of statistical literacy (Schield, 
2002).  You can get to it by googling “statistical literacy inventory” and clicking on 
the first entry.  Here are three of the questions on that test (as cited in The 
Washington Post on February 6, 2009): 
 

1. True or False. If a stock decreases 50 percent and then increases by 50 
percent, it will be back to its original value.  

2. True or False. If a stock drops from $300 to zero, that is a 300 percent 
decrease.  

3. A company has a 30 percent market share in the Western US and a 10 
percent market share in the Eastern US. What is the company's overall 
market share in the entire US?  

Do you know the answers? 

The interesting book, Mathsemantics, by Edward MacNeal (1994), includes a  
chapter on percentages in which the author discusses a number of errors that he 
discovered when a group of 196 applicants for positions with his consulting firm 
were tested.  Some of the errors, and some of the reasons that people gave for 
having made them, are pretty bizarre.  For example, when asked to express .814 
as a percentage to the nearest whole percent, one person gave as the answer 
“1/8 %”.  One of my favorite examples in that chapter is to a person (fortunately 
nameless) who claimed that Richie Ashburn, a former baseball player with the 
Philadelphia Phillies, hit “three hundred and fifty percent” in one of his major 
league seasons.  [I’m a baseball nut.]  In case you’re having trouble figuring out 
what’s wrong with that, I’ll help you out.  First of all, as you now know (if you 
already didn’t), percentages must be between 0 and 100.  Secondly, baseball 
batting averages are “per thousand” rather than “per hundred”.  Ashburn actually 
hit safely about 35% of the time, which, in baseball jargon, is “three fifty”, i.e., a 
proportion of .350. 
 
Speaking of my love for baseball, and going back to Simpson’s Paradox, I once 
wrote an article (Knapp, 1985) in which I provided real data that showed Player A 
had a higher batting average than Player B against both right-handed and left-
handed pitching but had a lower overall batting average.  I later discovered 
additional instances of batting averages that constituted evidence for a transitive 
case of Simpson’s Paradox, i.e., one for which A > B > C against both right-
handed and left-handed pitching, but for which A < B < C overall.  (The symbol > 
means “greater than”; < means “less than”.) 
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Chapter 3:   Percentages and probability  
 
 
What do we mean by the probability of something? 
 
There are several approaches to the definition of probability.  The first one that 
usually comes to mind is the so-called “a priori definition” that is a favorite of 
teachers of statistics who use coins, dice, and the like to explain probability.  In 
the “a priori” approach the probability of something is the number of ways that 
something can take place divided by the total number of equally likely outcomes.  
For example, in a single toss of a coin, the probability of “heads” is the number of 
ways that can happen (1) divided by the total number of equally likely outcomes 
(2…”heads” or “tails”), which is 1/2, .50, or 50%, depending upon whether you 
want to use fractions, proportions, or percentages to express the probability.  
Similarly, the probability of a “4” in a single roll of a die, is 1 (there is only one 
side of a die that has four spots) divided by 6 (the total number of sides), which is 
equal to 1/6, .167, or 16.7% (to three “significant figures”).  
 
But there are problems with that definition.  In the first place, it only works for 
symmetric situations such as the tossing of fair coins and the rolling of unloaded 
dice.  Secondly, it is actually circular, since it defines probability in terms of 
“equally likely”, which is itself a probabilistic concept.  Such concerns have led to 
a different definition, the “long-run empirical definition”, in which the probability of 
something is the number of ways that something did happen (note the use of 
“did” rather than “can”) divided by the total number of things that happened.  This 
definition works for things like thumbtack tosses (what is the probability of  
landing with its point up?) as well as for coins, dice, and many other probabilistic 
contexts.  The price one pays, however, is the cost of actually carrying out the 
empirical demonstration of tossing a thumbtack (or tossing a coin or rolling a 
die…) a large number of times.  And how large is large??     
 
There is a third (and somewhat controversial) “subjective definition” of probability 
that is used in conjunction with Bayesian statistics (an approach to statistics 
associated with a famous equation derived by the clergyman/mathematician  
Rev. Thomas Bayes who lived in the 18th century).  Probability is defined as a 
number between 0 and 1 (for fractions and proportions) or between 0 and 100 
(for percentages) that is indicative of a person’s “strength of conviction” that 
something will take place (note the use of “will” rather than either “can” or “did”). 
 
An example that illustrates various definitions of probability, especially the 
subjective definition, is the question of the meaning of “the probability of rain”.  
There recently appeared an article in The Journal of the American Meteorological 
Society, written by Joslyn, Nadav-Greenberg, and Nichols (2009), that was 
devoted entirely to that problem.  (Weather predictions in terms of percentages 
and probabilities have been around for about a century---see, for example, 
Hallenbeck, 1920.) 
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I’ve already said that I favor the reporting of parts out of wholes in terms of 
percentages rather than in terms of fractions or proportions.  I also favor the use 
of playing cards rather than coins or dice to explain probabilities.  That should 
come as no surprise to you, since in the previous chapter I referred to my 
Learning statistics through playing cards book (Knapp, 1996), which, by the way, 
also concentrates primarily on percentages.  
 
The probability of not-something 
  
If P is the probability that something will take place, in percentage terms, then 
100 – P is the probability that it will not take place.  For example, if you draw one 
card from an ordinary deck of cards, the probability P that it’s a spade is 13/52, or 
1/4, or .25, or 25%.  The probability that it’s not a spade is 100 – 25 = 75%, which 
can also be written as 39/52, or 3/4, or .75. 
 
Probabilities vs. odds 
 
People are always confusing probabilities and odds.  If P is the probability of 
something, in percentage terms, then the odds in favor of that something are P 
divided by (100 - P); and the odds against it are (100 - P) divided by P.  The latter 
is usually of greater interest, especially for very small probabilities.  For example, 
if you draw one card from an ordinary deck of cards, the probability P that it’s a 
spade, from above, is 13/52, or 1/4, or .25, or 25%.  The odds in favor of getting 
a spade are 25 divided by (100 – 25), or “1 in 3”; the odds against it are (100 – 
25) divided by 25, or “3 to 1”.  [In his book, Probabilities and life , the French 
mathematician Emile Borel (1962) claims that we act as though events with very 
small probabilities never occur.  He calls that “the single law of chance”.] 
 
There are actually two mistakes that are often made.  The first is the belief that  
probabilities and odds are the same thing (so some people would say that the 
odds of getting a spade are 1/4, or 25%).  The second is the belief that the odds 
against something are merely the reciprocal of its probability (so they would say 
that the odds against getting a spade are 4 to 1). 
 
“Complex” probabilities 
 
The examples just provided were for “simple” situations such as tossing a coin 
once, rolling a die once, or drawing one card from a deck of cards, for which you 
are interested in a simple outcome.  Most applications of probability involve more 
complicated matters.  If there are two “events”, A and B, with which you are 
concerned, the probability that either of them will take place is the sum of their 
respective probabilities, if the events are mutually exclusive, and the probability 
that both of them will take place is the product of their respective probabilities, if 
the events are independent.  Those are both mouthfuls, so let’s take lots of 
examples (again using playing cards): 
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1.  If you draw one card from a deck of cards, what is the probability that it is 
either a spade or a heart? 
 
Since getting a spade and getting a heart are mutually exclusive (a card cannot 
be a spade and a heart), the probability of either a spade or a heart is the 
probability of a spade plus the probability of a heart, which is equal to 13/52 plus 
13/52 = 26/52 = 1/2, or 50%.  [It’s generally easier to carry out the calculations 
using fractions, but to report the answer in terms of percentages.]  
 
2.  If two cards are drawn from a deck of cards, what is the probability that they 
are both spades? 
 
This problem is a bit more difficult.  We must first specify whether or not the first 
card is replaced in the deck before the second card is drawn.  If the two “events”, 
spade on first card and spade on second card, are to be independent (i.e., that 
the outcome of the second event does not depend upon the outcome of the first 
event) the first card must be replaced.  If so, the desired probability is 1/4 for the 
first card times 1/4 for the second card, which is equal to 1/16 or 6.25%.  If the 
first card is not replaced, the probability is 13/52 times 12/51 = 1/4 times 4/17 = 
1/17 or 5.88%. 
 
3.  If two cards are drawn from a deck of cards, what is the probability that either 
of them is a spade? 
 
This is indeed a complex problem.  First of all, we need to know if the cards are 
to be drawn “with replacement” (the first card is returned to the deck before the 
second card is drawn) or “without replacement” (it isn’t).  Secondly, we need to 
specify whether “either” means “one but not both” or “one or both”.  Let us 
consider just one of the four combinations.  (I’ll leave the other three as exercises 
for the curious reader!)   
 
If the drawing is with replacement and “either” means “one but not both”, the 
possibilities that are favorable to getting a spade are “spade on first draw, no 
spade on second draw” and “no spade on first draw, spade on second draw”.  
Those probabilities are, using the “or” rule in conjunction with the “and” rule, (1/4  
times 3/4)  plus (3/4 times 1/4), i.e., 3/16 + 3/16, or 6/16, or 3/8, or 37.5%. 
 
4.  In his other delightful book, How to take a chance, Darrell Huff (1959) 
discusses the probability of having two boys out of four children, if the probability 
of a boy and the probability of a girl are equally likely and independent of one 
another.  Many people think the answer is 2/4 = 1/2 = .50 = 50%.  Huff not only 
shows that the correct answer is 6/16 = 3/8 = .375 = 37.5%, but he (actually 
Irving Geis) illustrates each of the permutations.  You can look it up (as Casey 
Stengel used to say).  This is a conceptually different probability problem than 
the previous one.  It just happens to have the same answer. 
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The birthday problem 
 
There is a famous probability problem called “The Birthday Problem”, which asks:  
If n people are gathered at random in a room, what is the probability that at least 
two of them have the same birthday (same month and day, but not necessarily 
same year)?  It turns out that for an n of 23 the probability is actually (and non-
intuitively) greater than 50%, and for an n of 70 or so it is a virtual certainty!  See, 
for example, the website 
www.physics.harvard.edu/academics/undergrad/probweek/sol46 and my favorite 
mathematics book, Introduction to finite mathematics (Kemeny, Snell, and 
Thompson, 1956).  The best way to carry out the calculation is to determine the 
probability that NO TWO PEOPLE will have the same birthday (using the 
generalization of the “and” rule---see above), and subtract that from 100 (see the 
probability of not-something). 
 
Risks 
 
A risk is a special kind of percentage, and a special kind of probability, which is of 
particular interest in epidemiology. The risk of something, e.g., getting lung 
cancer, can be calculated as the number of people who get something divided by 
the total number of people who “could” get that something.  (The risk of lung 
cancer, actually the “crude” risk of lung cancer, is actually rather low in the United 
States, despite all of the frightening articles about its prevalence and its 
admittedly tragic consequences.) 
 
There is also an attributable risk (AR), the difference between the percentage of 
people in one group who get something and the percentage of people in another 
group who get that something.  [N.B. "Attributable" doesn't necessarily mean 
causal.] In Chapter 1 I gave a hypothetical example of the percentage of smokers 
who get lung cancer minus the percentage of non-smokers who get lung cancer, 
a difference of 10% - 2% = 8%. 
 
And then there is a relative risk (RR), the ratio of the percentage of people in one 
group who get something to the percentage of people in another group who get 
that something.  Referring back again to smoking and lung cancer, my 
hypothetical example produced a ratio of 10%/ 2%, or “5 to 1”.  
 
Risks need not only refer to undesirable outcomes.  The risk of making a million 
dollars by investing a thousand dollars, for example, is a desirable outcome (at 
least for the “winner”). 
 
The methodological literature is replete with discussions of the minimum value of 
relative risk that is worthy of serious consideration.  The most common value is 
"2.00 or more", especially when applying relative risks to individual court cases.  
Those same sources often have corresponding discussions of a related concept, 
the probability of causality [causation], PC, which is defined as 1 - 1/RR.  If the 
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RR threshold is 2.00, then the PC threshold is .50, or 50%.  See Parascandola 
(1998); Robins (2004); Scheines (2008); and Swaen and vanAmelsvoort (2009) 
for various points of view regarding both of those thresholds. 
 
Sensitivity and specificity 
 
In medical diagnostic testing there are two kinds of probability that are of interest: 
 
1.  The probability that the test will yield a “positive” result (a finding that the 
person being tested has the disease) if the person indeed has the disease.  Such 
a probability is referred to as the sensitivity of the test. 
 
2.  The probability that the test will yield a “negative” result (a finding that the 
person being tested does not have the disease) if the person indeed does not 
have the disease.  Such a probability is referred to as the specificity of the test. 
 
We would like both of those probabilities to be 100% (a perfect test).  Alas, that is 
not possible.  No matter how much time and effort go into devising diagnostic 
tests there will always be “false positives” (people who don’t have the disease but 
are said to have it) and “false negatives” (people who do have the disease but 
are said to not have it).  [Worse yet, as you try to improve the test by cutting 
down on the number of false positives you increase the number of false 
negatives, and vice versa.]  Its sensitivity is the probability of a “true positive”; its 
specificity is the probability of a “true negative”. 
 
There is something called Youden’s Index (Youden, 1950), which combines 
sensitivity and specificity.  Its formula can be written in a variety of ways,  the 
simplest being J = sensitivity + specificity – 100.  Theoretically it can range from -
100 (no sensitivity and no specificity) to 100 (perfect test), but is typically around 
80 (e.g., when both sensitivity and specificity are around 90%).  [A more 
interesting re-formulation of Youden’s Index can be written as J = (100- 
sensitivity) – (100-specificity), i.e., the difference between the true positive rate 
and the false positive rate.] 
 
For example (an example given by Gigerenzer, 2002, and pursued further in 
Gigerenzer et al., 2008 with slightly changed numbers), a particular 
mammography screening test might have a sensitivity of 90% and a specificity of 
91% (those are both high probabilities, but not 100%).   Suppose that the 
probability of getting breast cancer  is 1% (10 chances in 1000).   For every 
group of 1000 women tested,  10 of whom have breast cancer and 990 of whom 
do not, 9 of those who have it will be correctly identified (since the test’s 
sensitivity is 90%, and 90% of 10 is 9).  For the 990 who do not have breast 
cancer, 901 will be correctly identified (since the test’s specificity is 91%, and 
91% of 990 is 901).  Therefore there will be 9 true positives, 901 true negatives, 
89 false positives, and 1 false negative. 
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Gigerenzer goes on to point out the surprising conclusion that for every positive 
finding only about 1 in 11 (9 out of the 98 “positives”), or approximately 9%, is 
correct.  He argues that if a woman were to test positive she needn’t be overly 
concerned, since the probability that she actually has breast cancer is only 9%, 
with the corresponding odds of “89 to 9” (almost 10 to 1) against it.  A further 
implication is that it might not be cost-effective to use diagnostic tests with 
sensitivities and specificities as “low” as those. 
 
In his delightful book entitled Innumeracy (note the similarity to the word 
“illiteracy”), Paulos (1988) provides a similar example (p. 66) that illustrates how 
small the probability typically is of having a disease, given a positive diagnosis. 
 
For another (negative) commentary regarding cancer screening, see the recent 
JNCI editorial by Woloshin and Schwartz (2009). 
  
Probabilistic words and their quantification in terms of percentages 
 
The English language is loaded with words such as “always”, “never”, 
“sometimes”, “seldom”, etc.  [Is “sometimes” more often than “seldom”; or is it the 
other way ‘round?]  There is a vast literature on the extent to which people 
ascribe various percentages of the time to such words.  The key reference is an 
article that appeared in the journal Statistical Science written by Mosteller and 
Youtz (1990; see also the several comments regarding that article in the same 
journal and the rejoinder by Mosteller and Youtz).  They found, for example, that 
across 20 different studies the word “possible” received associated percentages 
throughout the entire scale (0% to 100%), with a median of 38.5%.  (Some 
people didn’t even ascribe 0% to “never” and 100% to “always”.  In an earlier 
article in the nursing research literature, Damrosch and Soeken (1983) reported 
a mean of 45.21% for “possible”, a mean of 13.71% for “never” and a mean of 
91.35% for “always”.)  Mosteller and Youtz quote former president Gerald R. 
Ford as having said that there was “a very real possibility” of a swine flu epidemic 
in 1976-77.  In a previous article, Mosteller (1976) estimated the public meaning 
of “a very real possibility” to be approximately 29%, and Boffey (1976) had 
claimed the experts put the probability of a swine flu epidemic in 1976 -77 
somewhat lower than that.  Shades of concerns about swine flu in 2009!  
 
There is a related matter in weather forecasting.  Some meteorologists (e.g., Jeff 
Haby) have suggested that words be used instead of percentages.  In a piece 
entitled “Using percentages in forecasts” on the weatherprediction.com website, 
he argues that probabilistic expressions such as “there is a 70% chance of a 
thunderstorm” should be replaced by verbal expressions such as “thunderstorms 
will be numerous”.  (See also the articles by Hallenbeck, 1920, and by Joslyn, et 
al., 2009, referred to above.)  Believe it or not, there is an online program for 
doing so, put together by Burnham and Schield in 2005.  You can get to it at the 
www.StatLit.org website.   
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There is also an interesting controversy in the philosophical literature regarding 
the use of probabilistic words in the analysis of syllogisms, rather than the more 
usual absolute words such as “All men are mortal; Socrates is a man; therefore, 
Socrates is mortal”.  It started with an article in the Notre Dame Journal of Formal 
Logic by Peterson (1979), followed by an article by Thompson (1982), followed 
by an unpublished paper by Peterson and Carnes, followed by another article by 
Thompson (1986), and ending (I think) with a scathing article by Carnes and 
Peterson (1991).  The controversy revolves around the use of words like “few”, 
“many”, and “most” in syllogisms.   An example given in Thompson’s second 
article (1986) is: 
 
Almost 27% of M are not P.  
Many more than 73% of M are S.  
Therefore, some S are not P. 
 
Is that a valid argument?  (You decide.) 
 
Chance success 
 
I take an 80-item true-false test and I answer 40 of them correctly.  Should I be 
happy about that?  Not really.  I could get around 40 (= 50%) without reading the 
questions, if the number of items for which “true” is the right answer is 
approximatley equal to the number of items for which “false” is the right answer, 
no matter what sort of guessing strategy I might employ (all true, all false, every 
other one true, etc.)   
 
The scoring directions for many objective tests (true-false, multiple-choice, 
matching, etc.) often recommend that every score on such tests be corrected for 
chance success.  The formula is R – W/(k-1), where R is the number of right 
answers, W is the number of wrong answers, and k is the number of choices.  
For the example just given, R = 40, W = 40, k = 2, so that my score would be 40 
– 40/(2-1) = 40 – 40 = 0, which is what I deserve! 
 
For more on chance success and the correction for guessing, see Diamond and 
Evans (1973). 
 
Percentages and probability in the courtroom 
 
As you might expect, probability (in terms of either percentages or fractions) 
plays an important role in jury trials.  One of the most notorious  cases was that 
of the famous professional football player and movie star, O.J. Simpson, who 
was accused in 1994 of murdering his wife, Nicole, and her friend, Ronald 
Goldman.  There was a great deal of evidence regarding probabilities that was 
introduced in that trial, e.g., the probability that an individual chosen at random 
would wear a size 12 shoe AND have blood spots on the left side of his body.  
(Simpson wears size 12; the police found size 12 footprints nearby, with blood 
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spots to the left of the footprints.  Simpson claimed he cut his finger at home.)  
For more on this, see the article by Merz and Caulkins (1995); the commentary 
by John Allen Paulos (1995---yes, that Paulos), who called it a case of 
“statisticide”; and the letters by defense attorney Alan Dershowitz (1995, 1999).  
[Simpson was acquitted.]  
 
Several years prior to the Simpson case (in 1964), a Mrs. Juanita Brooks was 
robbed in Los Angeles by a person whom witnesses identified as a white blonde 
female with a ponytail, who escaped in a yellow car driven by a black male with a 
mustache and a beard.  Janet and Malcolm Collins, an inter-racial couple who fit 
those descriptions, were arrested and convicted of the crime, on the basis of 
estimates of the following probabilities for persons drawn at random: 
 
P(yellow car) =  1/10 = 10% 
P(male with mustache) = 1/4 = 25% 
P(female with hair in ponytail) =  1/10 = 10% 
P(female with blonde hair) = 1/3 = 33 1/3 % 
P(black male with beard) =  1/10 = 10% 
P(inter-racial couple in car) = 1/1000 = .1% 
 
Product of those probabilities = 1/12,000,000 = .00000833% 
 [The convictions were overturned because there was no empirical evidence 
provided for those probabilities and their independence.  Oy.] 
    
There was another interesting case, Castenada v. Partida,  involving the use of 
percentages in the courtroom, which was cited in an article by Gastwirth (2005).  
It concerned whether or not Mexican-Americans were discriminated against in 
the jury-selection process.  (They constituted only 39% of the jurors, although 
they constituted 79.1% of the relevant population and 65% of the adults in that 
population who had some schooling.)   
 
My favorite percentages and probability example 
 
Let me end this chapter by citing my favorite example of misunderstanding of 
probabilities, also taken from Paulos (1988): 
 

“Later that evening we were watching the news, and the TV weather 
forecaster announced that there was a 50 percent chance of rain for 
Saturday and a 50 percent chance for Sunday, and concluded that there 
was therefore a 100 percent chance of rain that weekend.”  (p. 3) 

 
I think that says it all.
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Chapter 4:  Sample percentages vs. population percentages 
 
 
Almost all research studies that are concerned with percentages are carried out 
on samples (hopefully random) taken from populations, not on  entire 
populations.  It follows that the percentage in the sample might not be the same 
as the percentage in the population from which the sample is drawn.  For 
example, you might find that in a sample of 50 army recruits 20 of them, or 40%, 
are Catholics.  What percentage of all army recruits is Catholic?  40%?  Perhaps, 
if the sample “mirrors” the population.  But it is very difficult for a sample to be 
perfectly representative of the population from which it is drawn, even if it is 
randomly drawn. 
 
The matter of sampling error, wherein a sample statistic (such as a sample 
percentage) may not be equal to the corresponding population parameter (such 
as a population percentage) is the basic problem to which statistical inference is 
addressed.  If the two are close, the inference from sample to population is 
strong; if they’re not, it’s weak.  How do you make such inferences?  Read on. 
 
Point estimation 
 
A “single-best” estimate of a population percentage is the sample percentage, if 
the sample has been drawn at random, because the sample percentage has 
been shown to have some nice statistical properties, the most important of which 
is that is “unbiased”.  “Unbiased” means that the average of the percentages for 
a large number of repeated samples of the same size is equal to the population 
percentage, and therefore it is a “long-run” property.  It does NOT mean that 
you’ll hit the population percentage on the button each time.  But you’re just as 
likely to be off “on the high side” as you are to be off “on the low side”.  How 
much are you likely to be off?  That brings us to the concept of a standard error. 
 
Standard error 
 
A standard error of a statistic is a measure of how off you’re likely to be when you 
use a sample statistic as an estimate of a population parameter.  Mathematical 
statisticians have determined that the standard error of a sample percentage P is 
equal to the square root of the product of the population percentage and 100 
minus the population percentage, divided by the sample size n, if the sample size 
is large.   But you almost never know the population percentage (you’re trying to 
estimate it!).  Fortunately, the same mathematical statisticians have shown that 
the standard error of a sample percentage is APPROXIMATELY equal to the 
square root of the product of the sample percentage and 100 minus the sample 
percentage, divided by the sample size n; i.e., 
 
 S.E.  ≈  √ P (100 – P)/ n     [the symbol ≈ means approximately equal to] 
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For example, if you have a sample percentage of 40 for a sample size of 50, the 
standard error is √ 40(60)/50, which is equal to 6.93 to two decimal places, but 
let’s call it 7.  So you would be likely off by about 7% (plus or minus) if you 
estimate the population percentage to be 40%.   
 
Edgerton (1927) constructed a clever “abac” (mathematical nomogram) for 
reading off a standard error of a proportion (easily convertible to a percentage), 
given the sample proportion and the sample size.  [Yes, that was 1927… 82 
years ago!]  It’s very nice.  There are several other nomograms that are useful in 
working with statistical inferences for percentages (see, for example, 
Rosenbaum, 1959).  And you can even get a business-card-size chart of  the 
standard errors for various sample sizes at the www.gallup-robinson.com 
website.     
 
Interval estimation (confidence intervals) 
 
Since it is a bit presumptuous to use just one number as an estimate of a 
population percentage, particularly if the sample size is small (and 50 is a small 
sample size for a survey), it is recommended that you provide two numbers 
within which you believe the population percentage to lie.  If you are willing to 
make a few assumptions, such as sample percentages are normally distributed 
around population percentages, you should “lay off” two (it’s actually 1.96, but 
call it two) standard errors to the right and left of the sample percentage to get a 
“95% confidence interval” for the population percentage, i.e., an interval that you 
are 95% confident will “capture” the unknown population percentage.  (Survey 
researchers usually call two standard errors “the margin of error”,)   For our 
example, since the standard error is 7%, two standard errors are 14%, so 40% ± 
14%, an interval extending from 26% to 54%, constitutes the 95% confidence 
interval for the population percentage.  40% is still your “single-best” estimate, 
but you’re willing to entertain the possibility that the population percentage could 
be as low as 26% and as high as 54%.  It could of course be less than 26% or 
greater than 54%, but you would be pretty confident that it is not. 
 
Since two standard errors = 2 √ P (100 - P) / n and P(100 - P) is close to 2500 for 
values of P near 50, a reasonably good approximation to the margin of error is 
100/ √n . 
  
I said above that the formula for the standard error of a percentage is a function 
of the population percentage, but since that is usually unknown (that’s what 
you’re trying to estimate) you use the sample percentage instead to get an 
approximate standard error.  That’s OK for large samples, and for sample and 
population percentages that are close to 50.  A situation where it very much does 
matter whether you use the sample percentage or the population percentage in 
the formula for the standard error is in the safety of clinical trials for which the 
number of adverse events is very small.  For example, suppose no adverse 
events occurred in a safety trial for a sample of 30 patients.  The sample P = 0/30 
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= 0%.  Use of the above formula for the standard error would produce a standard 
error of 0, i.e., no sampling error!  Clearly something is wrong there.  You can’t 
use the sample percentage, and the population percentage is unknown, so what 
can you do?  It turns out that you have to ask what is the worst that could 
happen, given no adverse events in the sample.  The answer comes from “The 
rule of 3” (sort of like “The rule of 72” for interest rates; see Chapter 1).  
Mathematical statisticians have shown that the upper 95% confidence bound is 
3/n in terms of a proportion, or 300/n in terms of a percentage.  (See Jovanovic & 
Levy, 1997, and van Belle, 2002 regarding this intriguing result.  The latter 
source contains all sorts of "rules of thumb", some of which are very nice, but 
some of the things that are called rules of thumb really aren't, and there are lots 
of typos.)  The lower 95% confidence bound is, of course, 0.  So for our example 
you could be 95% confident that the interval from 0% to 10% (300/30 = 10) 
“captures” the percentage of adverse events in the population from which the 
sample has been drawn. 
   
There is nothing special about a 95% confidence interval, other than the fact that 
it is conventional.  If you want to have greater confidence than 95% for a given 
sample size you have to have a wider interval.  If you want to have a narrower 
confidence interval you can either settle for less confidence or take a larger 
sample size.  [Do you follow that?]  But the only way you can be 100% confident 
of your inference is to have an interval that goes from 0 to 100, i.e., the entire 
scale! 
 
One reason why many researchers prefer to work with proportions rather than 
percentages is that when the statistic of interest is itself a percentage it is a bit 
awkward to talk about a 95% confidence interval for a %.  But I don’t mind doing 
that.  Do you?   
 
In Chapter 1 I cited an article in the Public Opinion Quarterly by S.S. Wilks 
(1940a) regarding opinion polling.  In a supplementary article in that same issue 
he provided a clear exposition of confidence intervals for single percentages and 
for differences between two percentages (see the following chapter for the latter 
matter).  An article two years later by Mosteller and McCarthy (1942) in that 
journal shed further light on the estimation of population percentages.  [I had the 
personal privilege of “TAing” for both Professor Mosteller and Professor 
McCarthy when I was doing my doctoral study at Harvard in the late 1950s.  
Frederick Mosteller was also an exceptional statistician.] 
 
For a very comprehensive article concerning confidence intervals for proportions, 
see Newcombe (1998a).  He actually compared SEVEN different methods for 
getting confidence intervals for proportions, all of which are equally appropriate 
for percentages. 
 
Hypothesis testing  (significance testing) 
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Another approach to statistical inference (and until recently far and away the 
most common approach) is the use of hypothesis testing.  In this approach you 
start out by making a guess about a parameter, collect data for a sample, 
calculate the appropriate statistic, and then determine whether or not your guess 
was a good one.  Sounds complicated, doesn’t it?  It is, so let’s take an example. 
 
Going back to the army recruits, suppose that before you carried out the survey 
you had a hunch that about 23% of the recruits would be Catholic.  (You read 
somewhere that 23% of adults in the United States are Catholic, and you expect 
to find the same % for army recruits.)  You therefore hypothesize that the 
population percentage is equal to 23.  Having collected the data for a sample of 
50 recruits you find that the percentage Catholic in the sample is 40.  Is the 40 
“close enough” to the 23 so that you would not feel comfortable in rejecting your 
hypothesis?  Or are the two so discrepant that you can no longer stick with your 
hypothesis?  How do you decide? 
 
Given that “the margin of error” for a percentage is two standard errors and for 
your data two standard errors is approximately 14%, you can see that the 
difference of 17% between the hypothesized 23% and the obtained 40% is 
greater than the margin of error, so your best bet is to reject your hypothesis (it 
doesn’t reconcile with the sample data).  Does that mean that you have made the 
correct decision?  Not necessarily.  There is still some (admittedly small) chance 
that you could get 40% Catholics in a sample of 50 recruits when there are 
actually only 23% Catholics in the total population of army recruits. 
 
We’ve actually cheated a little in the previous paragraph.  Since the population 
percentage is hypothesized to be 23, the 23 should be used to calculate the 
standard error rather than the 40.  But for most situations it shouldn’t matter 
much whether you use the sample percentage or the hypothesized population 
percentage to get the standard error.  [√40(60)/50 = 6.93 is fairly close to 
√23(77)/50 = 5.95, for example.] 
 
The jargon of hypothesis testing 
 
There are several technical terms associated with hypothesis testing, similar to 
those associated with diagnostic testing (see the previous chapter): 
 
The hypothesis that is tested is often called a null hypothesis.  (Some people 
think that a null hypothesis has to have zero as the hypothesized value for a 
parameter.  They’re just wrong.) 
 
There is sometimes a second hypothesis that is pitted against the null hypothesis 
(but not for our example).  It is called, naturally enough, an alternative 
hypothesis. 
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If the null hypothesis is true (you’ll not know if it is or not) and you reject it, you 
are said to have made a Type I error. 
 
If the null hypothesis is false (you’ll not know that either) and you fail to reject it, 
you are said to have made a Type II error. 
 
The probability of making a Type I error is called the level of significance and is 
given the Greek symbol α. 
 
The probability of making a Type II error doesn’t usually have a name, but it is 
given the Greek symbol β. 
 
1 – β is called the power of the hypothesis test. 
 
Back to our example 
 
Null hypothesis:  Population percentage = 23 
 
If the null hypothesis is rejected, the sample finding is said to be “statistically 
significant”.  (Hypothesis testing is often called significance testing.)  If the null 
hypothesis is not rejected, the sample finding is said to be “not statistically 
significant”. 
 
Suppose you reject that hypothesis, since the corresponding statistic was 40, but 
it (the null hypothesis) is actually true.  Then you have made a Type I error 
(rejecting a true null hypothesis). 
 
If you do not reject the null hypothesis and it’s false (and “should have been 
rejected”) then you would have made a Type II error (not rejecting a false null 
hypothesis). 
 
The level of significance, α, should be chosen before the data are collected, 
since it is the “risk” that one is willing to run of making a Type I error.  Sometimes 
it is not stated beforehand.  If the null hypothesis is rejected, the researcher 
merely reports the probability of getting a sample result that is even more 
discrepant from the null hypothesis than the one actually obtained if the null 
hypothesis is true.  That probability is called a p value, and is typically reported 
as p < .05 (i.e., 5%), p < .01 (i.e., 1%),  or p < .001 (i.e., .1%) to indicate how 
unlikely the sample result would be if the null hypothesis is true.   
 
β and/or power (= 1 – β) should also be stated beforehand, but they depend 
upon the alternative hypothesis, which is often not postulated.  [In order to draw 
the “right” sample size to test a null hypothesis against an alternative hypothesis, 
the alternative hypothesis must be explicitly stated.  Tables and formulas are 
available (see, for example, Cohen, 1988) for determining the “optimal” sample 
size for a desired power.] 
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The connection between interval estimation and hypothesis testing 
 
You might have already figured out that you can do hypothesis testing for a 
percentage as a special case of interval estimation.  It goes like this:   
 
1.  Get a confidence interval around the sample percentage.   
 
2.   If the hypothesized value for the population percentage is outside that 
interval, reject it; if it’s inside the interval, don’t reject it. 
 
[Strictly speaking, you should use the sample percentage to get the standard 
error in interval estimation and you should use the hypothesized population 
percentage to get the standard error in hypothesis testing--see above--but let’s 
not worry about that here.] 
 
Neat, huh?  Let’s consider the army recruits example again.  The sample 
percentage is 40.  The 95% confidence interval goes from 26 to 54.  The 
hypothesized value of 23 falls outside that interval.  Therefore, reject it.  (That 
doesn’t mean it’s necessarily false.  Remember Type I error!) 
 
It’s all a matter of compatibility.  The sample percentage of 40 is a piece of real 
empirical data.  You know you got that.  What you don’t know, but you wish you 
did, is the population percentage.  Percentages of 26 to 54 are compatible with 
the 40, as indicated by the 95% confidence you have that the interval from 26 to 
54 “captures” the population percentage.  23 is just too far away from 40 to be 
defensible. 
 
van Belle (2002) takes an idiosyncratic approach to interval estimation vs. 
hypothesis testing.  He claims that you should use the hypothesis testing 
approach in order to determine an appropriate sample size, before the study is 
carried out; but you should use interval estimation to report the results after the 
study has been carried out.  I disagree.  There are the same sorts of sources for 
the determination of sample size in the context of interval estimation as there are 
for the determination of sample size in the context of hypothesis testing.  (See 
the reference to Walker & Lev, 1953 in the following section.)  In my opinion, if 
you have a hypothesis to test (especially if you have both a null and an 
alternative hypothesis), you should use hypothesis-testing procedures for the 
determination of sample size.  If you don't, go the interval estimation route all the 
way.               
  
Caution:  Using interval estimation to do hypothesis testing can be more 
complicated than doing hypothesis testing directly.  I will provide an example of 
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such a situation in Chapter 5 in conjunction with statistical inferences for relative 
risks. 
 
 
Sample size 
 
In all of the foregoing it was tacitly assumed that the size of the sample was fixed 
and the statistical inference was to be based upon the sample size that you were 
“stuck with”.  But suppose that you were interested in using a sample size that 
would be optimal for carrying out the inference from a sample percentage to the 
percentage in the population from which the sample had been drawn.  There are 
rather straightforward procedures for so doing.  All you need do is to decide 
beforehand how much confidence you want to have when you get the inferred 
interval, how much error you can tolerate in making the inference, have a very 
rough approximation of what the population percentage might be, and use the 
appropriate formula, table, or internet routine for determining what size sample 
would satisfy those specifications.  
 
Let’s take an example.  Suppose you were interested in getting a 95% 
confidence interval (95% is conventional), you don’t want to be off by more than 
5%, and you think the population percentage is around 50 (that’s when the 
standard error is largest, so that’s the most “conservative” estimate).  The 
formula for the minimum optimal sample size is: 
 
n ≈ 4z2 P(100-P)/W2  [see, for example, Walker and Lev (1953, p.  70)] 
 
where P is your best guess, W is the width of the confidence interval (the width is 
twice the margin of error), and z is the number of standard errors you need to 
“lay off” to the right and to the left of the sample P (z comes from the normal, bell-
shaped  sampling distribution).  Substituting the appropriate values in that 
formula (z is approximately equal to 2 for 95% confidence) you find that n is 
equal to 4(2)2 50(100-50) /102 = 400.  If you draw a sample of less than 400 you 
will have less than 95% confidence when you get the sample P and construct the 
interval.   If you want more confidence than 95% you’ll need to lay off more 
standard errors and have a larger n (for three standard errors you’ll need an n of 
about 900).  If you want to stay with 95% confidence but you can tolerate more 
error (say 10% rather than 5%, so that W = 20), then you could get away with an 
n of about 100. 
 
The Dimension Research, Inc. website actually does all of the calculations for 
you.  Just google “dimension research calculator”, click on the first entry that 
comes up, and click on “sample size for proportion” on the left-hand-side menu .  
Then select a confidence interval, enter your “best-guess” P and your tolerable ½ 
W, click the Calculate button, and Shazam! You’ve got n.   
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van Belle (2002) claims that you should have a sample size of at least 12 when 
you construct a confidence interval.  He provides a diagram that indicates the 
precision of an interval is very poor up to an n of 12 but starts to level off 
thereafter. 
 
Percentage transformations 
 
One of the problems when carrying out statistical inferences for percentages is 
the fact that percentages are necessarily “boxed in” between 0 and 100, and 
often have rather strange distributions across aggregates for which they have 
been computed.  There can’t be less than 0% and there can’t be more than 
100%, so if most of the observations are at the high end of the scale (large 
percentages) or at the low end of the scale (small percentages) it is almost 
impossible to satisfy the linearity and normal distribution assumptions that are 
required for many inferential tests. 
 
Consider the following example taken from the Ecstathy website: 
 
You have data regarding % Postgraduate Education and % Belief in Biblical 
Literalism for members of 13 religious denominations (Unitarian-Universalist,  
Episcopal Church,  United Presbyterian,  United Church of Christ,  United 
Methodist, Evangelical Lutheran Church,  Roman Catholic, Southern Baptist, 
Seventh Day Adventist, Church of  Nazarene,  Assemblies of God,  Jehovah’s 
Witness, and Church of God in Christ), and you’re interested in the relationship 
between those two variables.  You plot the data as depicted in the following 
scatter diagram (which includes the “best-fitting” line and the regression 
statistics: 
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Here is the plot without the names of the religions superimposed (and with 
proportions rather than percentages, but that doesn’t matter): 

 
 
You would like to use Pearson’s product-moment correlation coefficient to 
summarize the relationship and to make an inference regarding the relationship 
in the population of religious denominations from which those 13 have been 
drawn (assume that the sample is a simple random sample, which it undoubtedly 
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was not!).   But you observe that the plot without the names is not linear (it is 
curvilear) and the assumption of bivariate normality in the population is also not 
likely to be satisfied.  What are you to do?  The recommendation made by the 
bloggers at the website is to transform both sets of percentages into logits (which 
are special types of logarithmic transformations), plot the logits, and carry out the 
analysis in terms of the logits of the percentages rather than in terms of the 
percentages themselves.  It works; here’s the plot (this one looks pretty linear to 
me): 
 

   
 
There are transformations of percentages other than logits that have been 
recommended in the methodological literature--see, for example, the articles by 
Zubin (1935), by Finney (1947; 1975), and by Osborne (2002).  Zubin even 
provided a handy-dandy table for converting a percentage into something he 
called t or T (not the t of the well-known t test, and not the T of T scores).  Nice.   
 
The classic case of inferences regarding single percentages 
 
You manufacture widgets to be sold to customers.  You worry that some of the 
widgets might be defective, i.e., you are concerned about “quality control”.  What 
should you do?  If the widgets are very small objects (such as thumbtacks) that 
are made by the thousands in an assembly-line process, the one thing you can’t 
afford to do is inspect each and every one of them before shipping them out.  But 
you can use a technique that’s called acceptance sampling, whereby you take a 
random sample of, say, 120 out of 2000 of them, inspect all of the widgets in the 
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sample, determine the percentage of defectives in the sample, and make a 
judgment regarding whether or not that percentage is “acceptable”.    
 
For example, suppose you claim (hope?) that  your customers won’t complain if 
there are 2% (= 40) or fewer defectives in the “lot” of 2000 widgets that they buy.  
You find there are 3 defectives (1.67%) in the sample.  Should you automatically 
accept the lot (the population) from which the sample has been drawn?  Not 
necessarily.  There is some probability that the lot of 2000 has more than 2% 
defectives even though the sample has ony 1.67%.  This is the same problem 
that was discussed in a different context (see above) regarding the percentage of 
army recruits that is Catholic.  Once again, you have three choices: (1) get a 
point estimate and use it (1.67%) as your single-best estimate; (2) establish a 
confidence interval around that estimate and see whether or not that interval 
“captures” the tolerable 2%; or (3) directly test the 2% as a null hypothesis. 
 
There is an excellent summary of acceptance sampling available at 
myphliputil.pearsoncmg.com/student/bp_heizer...7/ct02.pdf.  For the problem just 
considered, it turns out that the probability of acceptance is approximately .80 
(i.e., an 80% probability).  I used the same numbers that they do, their “widgets” 
are batteries, and they take into account the risk to the customer (consumer) as 
well as the risk to the manufacturer (producer). 
  
A great website for inferences regarding percentages in general 
 
The West Chester University website has an excellent collection of discussions 
of statistical topics.  Although that website is intended primarily for students who 
are taking college courses online, any interested parties can download any of the 
various sections.  Section 7_3 is concerned with the finite population correction 
that should be used for inferences regarding percentages for samples drawn 
from “small”, i.e., finite, populations.  See also Krejcie & Morgan, 1970; 
Buonaccorsi, 1987; and Berry, Mielke, and Helmericks, 1988 for such inferences.  
vanBelle (2002) argues that the correction can usually be ignored.)  The 
website’s name is: 
http://courses.wcupa.edu/rbove/Berenson/CD-ROM%20Topics/Section 7_3 
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Chapter 5:   Statistical inferences for differences between percentages and 
ratios of percentages 

 
 
In the previous chapter I talked about statistical inferences for a single 
percentage.  Such inferences are fairly common for survey research but not for 
other kinds of research, e.g., experimental research in which two or more 
“treatments” are compared with one another.  The inference of greatest interest 
in experimental research is for the difference between two statistics or the ratio of 
two statistics, e.g., the percentage of people in “the experimental group” who do 
(or get) something and the percentage of people in “the control group” who do (or 
get) something.  The “something” is typically a desirable outcome such as 
“passed the course” or an undesirable outcome such as “died”. 
 
Differences between percentages 
 
Just as for a single percentage, we have our choice of point estimation, interval 
estimation, or hypothesis testing.  The relevant point estimate is the difference 
between the two sample percentages.  Since they are percentages, their 
difference is a percentage.  If one of the percentages is the % in an experimental 
group that “survived” (they got the pill, for example), and the other percentage is 
the % in a control group that “survived” (they didn’t get the pill), then the 
difference between the two percentages gives you an estimate of the “absolute 
effect” of the experimental condition.  If 40% of experimental subjects survive and 
30% of  control subjects survive, the estimate of the experimental effect is 10%. 
 
But just as for a single percentage, it is better to report two numbers rather than 
one number for an estimate, i.e., the endpoints of a confidence interval around 
the difference between the two percentages.  That necessitates the calculation of 
the standard error of the difference between two percentages, which is more 
complicated than for the standard error of a single percentage.  The formula for 
two independent samples (“unmatched”) and the formula for two dependent 
samples (matched by virtue of being the same people or matched pairs of 
people) are different.   
 
The independent samples case is more common.  The formula for the standard 
error of the difference between two independent percentages is: 
 
S.E. ≈ √  P1(100 – P1)/n1   +  P2(100 – P2)/n2 
 
where the P’s are the two percentages and the n’s are the two sample sizes.  It 
often helps to display the relevant data in a “2 by 2” table: 
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   Sample 1 Sample 2 
 
“Success”        P1        P2 

 

 
“Failure”  100 – P1 100 – P2 

 
where “Success” and “Failure” are the two categories of the variable upon which 
the percentages are taken, and need not be pejorative. 
 
Edgerton’s (1927) abac can be used to read off the standard error of the 
difference between two independent percentages, as well as the standard error 
of a single sample percentage.  Later, Hart (1949) and Lawshe and Baker (1950) 
presented quick ways to test the significance of the difference between two 
independent percentages. Stuart (1963) provided a very nice set of tables of 
standard errors of percentages for differences between two independent samples 
for various sample sizes, which can also be used for the single-sample case.  
And Fleiss, Levin, and Paik (2003)  provide all of the formulas you’ll ever need for 
inferences regarding the difference between percentages.  They even have a set 
of tables (pp. 660-683) for determining the appropriate sample sizes for testing 
the significance of the difference between two percentages.  (See also Hopkins & 
Chappell, 1994.) 
   
The formula for dependent samples is a real mess, involving not only the sample 
percentages and the sample sizes but also the correlation between the two sets 
of data (since the percentages are for the same people or for matched people).  
However, McNemar (1947) provided a rather simple formula that is a reasonable 
approximation to the more complicated one:   
 
S.E. ≈  100/n √ (b + c) 
 
where n ( = n1 =  n2 , since the people are paired with themselves or with their 
“partners”), b is the number of pairs for which the person in Sample 1 was a 
“success” and the partner in Sample 2 was a “failure”; and c is the number of 
pairs for which the person in Sample 1 was a “failure” and the partner in Sample 
2 was a “success”. 
     
Sample 1    Sample 2 
   “Success”       “Failure” 
 
“Success”         [a]            [b]  P1 =   (a+b)/n    
 
 
“Failure”         [c]  [d]   
 
           P2  =  (a+c)/n 
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a  is the number of pairs for which both members were “successes”, and 
d  is the number of pairs for which both members were “failures”; but, rather 
surprisingly, neither a nor d contributes to the standard error.   
 
If a researcher is concerned with change in a given sample from Time 1 to Time 
2, that also calls for the dependent-samples formula. 
 
An example to illustrate both the independent and the dependent cases 
 
You are interested in the percentage of people who pass examinations in  
epidemiology.  Suppose there are two independent samples of 50 students each 
(50 males and 50 females) drawn from the same population of graduate 
students, where both samples take an epidemiology examination.  The number 
of males who pass the examination is 40 and the number of females who pass is 
45. 
 
 Displaying the data as suggested above we have: 
 
    Males  Females 
 
Passed   40/50 = 80%  45/50 = 90%  
 
Failed    10/50 = 20%    5/50 = 10%    
 
 
The standard error of the difference between the two percentages is  
 
S.E. ≈  √   80(20)/50  +  90(10)/50   =   7.07  (rounded to two places) 
    
On the other hand, suppose that these students consist of 50 married couples 
who take the same course, have studied together (within pairs, not between 
pairs), and take the same epidemiology examination.  Those samples would be 
dependent.  If in 74% of the couples both husband and wife passed, in 6% of the 
couples wife passed but husband failed, in 16% of the couples husband passed 
but wife failed, and in 2 couples both spouses failed, we would have the following 
“2 by 2” table: 
 
Husband    Wife 
      Passed       Failed 
 
Passed                       37    [a]            3    [b] 40 (= 80%) 
 
Failed        8    [c]            2   [d] 10  
 
 
      45  (= 90%)              
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S.E.  ≈  100/50√ (3 + 8) =  6.63  
 
In both cases 80% of the males passed and 90% of the females passed, but the 
standard error is smaller for matched pairs since the data for husbands and 
wives are positively correlated and the sampling error is smaller.  If the 
correlation between paired outcomes is not very high, say less than .50 (van 
Belle, 2002) the pairing of the data is not very sensitive.  If the correlation should 
happen to be NEGATIVE, the sampling error could actually be WORSE for 
dependent samples than for independent samples!   
 
Would you believe that there is also a procedure for estimating the standard error 
of the difference between two “partially independent, partially dependent” 
percentages?  In the husbands and wives example, for instance, suppose there 
are some couples for which you have only husband data and there are some 
couples for which you have only wife data.  Choi and Stablein (1982) and 
Thompson (1995) explain how to carry out statistical inferences for such 
situations. 
 
Interval estimation for the difference between two independent percentages 
 
As far as the interval estimation of the difference between two independent 
population percentages is concerned, we proceed just as we did for a single 
population percentage, viz., “laying off” two S.E.’s to the right and to the left of 
the difference between the two sample percentages in order to get a 95% 
confidence interval for the difference between the two corresponding population 
percentages. 
 
The sample difference is 90% - 80 % = 10% for our example.  The standard error 
for the independent case is 7.07%.   Two standard errors would be 14.14%.  The 
95% confidence interval for the population difference would therefore extend 
from 10% - 14.14% to 10% + 14.14%, i.e., from -4.14% to 24.14%.  You would 
be 95% confident that the interval would “capture” the  difference between the 
two population percentages.  [Note that the -4.14% is a difference, not an actual 
%.]  Since Sample 2 is the wives sample and Sample 1 is the husbands sample, 
and we subtracted the husband % from the wife %, we are willing to believe that 
in the respective populations the difference could be anywhere between 4.14% 
“in favor of” the husbands and  24.14% “in favor of” the wives.  
 
I refer you to an article by Wilks (1940b) for one of the very best discussions of 
confidence intervals for the difference between two independent percentages.  
And in the previous chapter I mentioned an article by Newcombe (1998) in which 
he compared seven methods for determining a confidence interval for a single 
proportion.  He followed that article with another article (Newcombe, 1998b) in 
which he compared ELEVEN methods for determining a confidence interval for 
the difference between two independent proportions! 
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Hypothesis testing for the difference between two independent percentages 
 
In the previous chapter I pointed out that except for a couple of technical details, 
interval estimation subsumes hypothesis testing, i.e., the confidence interval 
consists of all of the hypothesized values of a parameter that are “not rejectable”.  
For our example any hypothesis concerning a population difference of -4.14 
through 24.14 would not be rejected (and would be regarded as “not statistically 
significant at the 5% level”).  Any hypotheses concerning a population difference 
that is outside of that range would be rejected (and would be regarded as 
“statistically significant at the 5% level”). 
 
In a very interesting article concerning the statistical significance of the difference 
between two independent percentages (he uses proportions), the late and ever-
controversial Alvan R. Feinstein (1990) proposed the use of a “unit fragility index” 
in conjunction with the significance test.  This index provides an indication of the 
effect of a “switch” of an observation from one category of the dependent variable 
to the other category (his illustrative example had to do with a comparison of 
cephaloridine with ampicillin in a randomized clinical trial).  That index is 
especially helpful in interpreting the results of a trial in which the sample is small.  
(See also the commentary by Walter, 1991 regarding Feinstein’s index.) 
 
Feinstein was well-known for his invention of methodological terminology.  My 
favorite of his terms is “trohoc” [that’s “cohort” spelled backwards] instead of 
“case-control study”.  He didn’t like case-control studies, in which “cases” who 
have a disease are retrospectively compared with “controls” who don’t, in an 
observational non-experiment. 
  
There is an advantage of interval estimation over hypothesis testing that I’ve 
never seen discussed in the methodological literature.  Researchers often find it 
difficult to hypothesize the actual magnitude of a difference that they claim to be 
true in the population (and is not “null”).  The theory underlying their work is often 
not far enough advanced to suggest what the effect might be.  They are 
nevertheless eager to know its approximate magnitude.  Therefore, instead of 
pitting their research (alternative) hypothesis against a null hypothesis and using 
power analysis for determining the appropriate sample size for testing the effect, 
all they need to do is to specify the magnitude of a tolerable width of a 
confidence interval (for a margin of error of, say, 3%), use that as the basis for 
the determination of sample size (see the appropriate formula in Fleiss, et al., 
2003), carry out the study, and report the confidence interval.  Nice; 
straightforward; no need to provide granting agencies with weak theories; and no 
embarrassment that often accompanies hurriedly-postulated effects that far 
exceed those actually obtained. 
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Two examples of lots of differences between percentages 
 
Peterson, et al. (2009) were interested in testing the effectiveness of a particular 
invention designed to help teenagers to stop smoking.  Using a rather elaborate 
design that had a tricky unit-of analysis problem (schools containing teenage 
smokers were randomly assigned to the experimental treatment and to the 
control treatment, rather than individual students).  Their article is loaded with      
both confidence intervals for, and significance tests of, the difference between 
two percentages.   
 
Sarna, et al. (2009) were also interested in stopping smoking, but for nurses 
rather than teenagers.  Like Peterson, et al., their article contains several tables 
of confidence intervals and significance tests for the differences between 
percentages.  But it is about a survey, not an experiment, in which nurses who 
quit smoking were compared to nurses who did not quit smoking, even though all 
of them registered at the Nurses QuitNet website for help in trying to do so.  
 
If you're interested in smoking cessation, please read both of those articles and 
let me know (tknapp5@juno.com) what you think of them. 
 
The difference between two percentages that have to add to 100 
 
In Chapter 2 I said that I don’t care much for the practice of taking differences 
between two percentages that have been calculated on the same base for the 
same variable, e.g., the difference in support for Candidate A and Candidate B 
for the same political office.  I am even more opposed to making any statistical 
inferences for such differences.  If you care about that sort of thing, I refer you to 
Richard Lowry’s fine VassarStats website.  
 
Ratios of percentages 
 
Now for the “biggie” in epidemiological research.  We’ve already discussed the 
difference between absolute risk, as represented by the difference between two 
percentages, and relative risk, as represented by the ratio of two percentages.  
Relative risk tends to be of greater importance in epidemiology, since the 
emphasis is on risks for large populations of people having one characteristic 
compared to risks for equally large populations of people having a contrasting 
characteristic.   
 
The classic example is smokers vs. non-smokers and the relative risk of getting 
lung cancer.  But let’s take as a simpler example the relationship between 
maternal age and birthweight.  Fleiss, et al. (2003) provide a set of hypothetical 
data for that problem.  Here are the data: 
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    Maternal age 
 
Birthweight    ≤ 20 years              > 20 years 
 
≤ 2500 grams  10     15    
 
 
> 2500 grams  40   135 
 
The ratio of interest is the percentage of younger women whose baby is of low 
birthweight (10/50, or 20%) divided by the percentage of older women whose 
baby is of low birthweight (15/150, or 10%).  The relative risk of low birthweight is 
therefore 20%/10%, or 2.00.  If these data are for a random sample of 200 
women, what is the 95% confidence interval for the relative risk in the population 
from which the sample has been drawn?  Is the relative risk of 2.00 statistically 
significant at the 5% level?  Although the first question is concerned with interval 
estimation and the second question is concerned with hypothesis testing, the two 
questions are essentially the same, as we have already seen several times. 
 
I shall give only a brief outline of the procedures for answering those questions.  
The determination of an estimate of the standard error of the ratio of two 
percentages is a bit complicated, but here it is (Fleiss, et al., 2003, p. 132): 
 
S.E.  ≈  r √ (n12 / n11 n1. + n22 / n21 n2. ), where 
 
n11  is the number in the upper-left corner of the table (10 in the example) 
 
n12  is the number in the upper-right corner (40) 
 
n21  is the number in the lower-left corner (15) 
 
n22  is the number in the lower-right corner (135) 
 
n1.  is the total for the first row (50) 
 
n2.  is the total for the second row (150) 
 
Substituting those numbers in the formula for the standard error, we get 
 
S.E.  =  .75 (to two decimal places) 
 
Two standard errors would be approximately 1.50, so the 95% confidence 
interval for the population ratio would be from .50 to 3.50.  Since that interval 
includes 1 (a relative risk of 1 is the same risk for both groups), the obtained 
sample ratio of 2.00 is not statistically significant at the 5% level. 
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Fleiss, et al. (2003) actually recommend that the above formula for estimating the 
standard error not be used to get a confidence interval for a ratio of two 
percentages.  They suggest instead that the researcher use the “odds ratio” 
instead of the relative risk (the odds ratio for those data is 2.25), take the 
logarithm of the odds ratio, and report the confidence interval in terms of  “log 
odds”.  [Here we go with logarithms again!]  I don’t think that is necessary, since 
everything is approximate anyhow.  If those data were real, the principal finding 
is that younger mothers do not have too much greater risk for having babies of 
low birthweight than do older mothers.  Fleiss et al. arrive at the same conclusion 
by using the logarithmic approach.  
 
Another “hybrid” inferential problem 
 
Earlier in this chapter I referred to procedures derived by Choi  and Stablein 
(1982) and by Thompson (1995) for estimating the standard error of the 
difference between two percentages where the samples were partially 
independent and partially dependent, due to missing data.  There is another 
interesting situation that comes up occasionally where you would like to test the 
difference between two independent percentage gains, i.e., where each gain is 
the difference between two dependent percentages.  (A loss is treated as a 
negative gain.) Building upon the work of Marascuilo and Serlin (1979) [see also 
Levin & Serlin, 2000], Howell (2008) discussed a hypothetical example where a 
change from fall (42/70 = 60%) to spring (45/70 = 64.3%) for an intervention 
group is compared with change from fall (38/70 = 54.3%) to spring (39/70 = 
55.7%) for a control group.  The difference between the 4.3% gain for the 
intervention group and the 1.4% gain for the control group was not statistically 
significant, which is not surprising since the “swing” is only about 3%.  Those of 
you who are familiar with the classic monograph on experimental design by 
Campbell and Stanley (1966) might recognize Howell’s example as a special 
case of Campbell and Stanley’s True Experimental Design #4, i.e., the  
Pretest/Posttest Control Group Design. (See also the article by Vickers, 2001 in 
which he discusses four different ways for analyzing the data for such a design.) 
 
Sample size 
 
In the previous chapter I talked about a handy-dandy internet calculator that 
determined the optimal sample size for a confidence interval for a single 
percentage.  The situation for determining the optimal sample sizes for 
confidence intervals for the difference between two percentages or the ratio of 
two percentages (for either independent samples or for dependent samples) is 
much more complicated.  (See Fleiss, et al., 2003, for all of the gory details.  And 
the PASS2008 software is particularly good for carrying out all of the calculations 
for you [it is available for a 7-day free trial].) 
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Non-random samples and full populations 
 
Suppose you have a non-random sample of boys and a non-random sample of 
girls from a particular school and you want to compare the percentage of boys in 
the boy sample who think that President Obama is doing a good job with the 
percentage of girls in the girl sample who think that President Obama is doing a 
good job.  Would a confidence interval or a significance test of the difference 
between, or the ratio of, the two percentages be appropriate?  Suppose you have 
percentages for the entire population of boys and the entire population of girls?  
Would a confidence interval or a significance test be appropriate there? 
 
You can’t imagine how controversial both of those matters are!  The opinions 
range from “very conservative” to “very liberal”.  The very conservative people 
argue that statistical inferences are appropriate only for probability samples, of 
which “simple” random samples are the most common type (everybody has an 
equal and independent chance of being drawn into the sample) and not for either 
non-random samples or entire populations. Period.  End of discussion.  The very 
liberal people argue that they are appropriate for both non-random samples and 
for entire populations, since they provide an objective basis for determining 
whether or not, or to what extent, to get excited about a finding.  The people in-
between (which from a cursory glance at the scientific literature are the majority) 
argue that for a non-random sample it is appropriate to use statistical inferential 
procedures in order to generalize from the non-random sample to a hypothetical 
population of people “like these”; and/or it might be appropriate to use statistical 
inferential procedures for an entire population in order to generalize from a 
finding now to findings for that population at other times.  As one of those “very 
conservative people” (we meet in a telephone booth every year), those last two 
arguments blow my mind.  I don’t care about  hypothetical populations (do you?) 
and hardly anybody studies populations by sampling them across time. 
 
In his article, Desbiens (2007) did a review of the literature and found that many 
authors of research reports in medical education journals use statistical 
inferences for entire populations.  He claims that they shouldn’t.  I agree. 
 
More than two percentages 
 
The previous discussion was concerned with procedures for statistical inferences 
when comparing the difference between, or the ratio of, two percentages.  It is 
natural to ask if these procedures generalize to three or more percentages.  The 
answer is “sort of”.   
 
If you’re interested in testing the significance of the difference AMONG several 
percentages (e.g., the percentage of Catholics who voted for Obama, the 
percentage of Protestants who voted for Obama, and the percentage of Jews 
who voted for Obama), there are comparable (and more complicated) formulas 
for so doing (see Fleiss, et al., 2003).   Confidence intervals for the more-than-
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two case, however, are much more awkward to handle, primarily because there 
are three differences (A-B, A-C, B-C) to take into consideration.  [There might 
also be those same three differences to take into consideration when carrying out 
the significance testing, if you care about pairwise differences as well as the 
overall difference.  It’s just like the problem of an overall F test vs. post hoc 
comparisons in the analysis of variance, if that means anything to you!] 
 
The situation for ratios  is even worse.  There is no appropriate statistic for 
handling A/B/C, for example, either via significance testing or confidence 
intervals.
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Chapter 6:   Graphing percentages 
 
 
I’ve never cared much for statistical graphics, except for scatter diagrams that 
facilitate the understanding of the form and the degree of the relationship 
between two variables.  (See the scatter diagrams that I used in Chapter 4 to 
illustrate data transformations for percentages.)  I also don’t always agree with 
the often-stated claim that “a picture is worth a thousand words”.  (I like words.)  
But I realize that there are some people who prefer graphs to words and tables, 
even when it comes to percentages.  I therefore decided to include in this book a 
brief chapter on how to display percentages properly when graphical techniques 
are  used.  You may want to adjust your “zoom” view for some of these graphs, in 
order to get a better idea of the information contained therein. 
 
Pie charts 
 
Far and away the most common way to show percentages is the use of pie 
charts, with or without colors.  For example, if one of the findings of a survey is 
that 60% of cigarette smokers are males and 40% of cigarette smokers are 
females, that result could be displayed by using a “pie” (circle) divided into two 
“slices”, a blue slice constituting 60% of the pie (216 of the 360 degrees in the 
circle) labeled MALES, and a red slice constituting the other 40% of the pie (the 
other 144 degrees) labeled FEMALES.  There is absolutely nothing wrong with 
such charts, but I think they’re unnecessary for summarizing two numbers (60 
and 40)---actually only one number (60 or 40)---since the other follows 
automatically.  If the variable has more than two categories, pie charts are 
somewhat more defensible for displaying percentages, but if the number of 
categories is too large it is difficult to see where one slice ends and another slice 
begins. 
 
The software EXCEL that is part of Microsoft Office has the capability of 
constructing pie charts (as well as many other kinds of charts and graphs), and it 
is fairly easy to “copy and paste” pie charts into other documents.  Here’s one for 
the 60% male, 40% female example.   
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Percentage bySex

60%

40%

Male

 Female

 
 
Here’s another, and more complicated, pie chart that illustrates one way to 
handle “small slices”.  The data are for the year 2000. 
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Some people are adamantly opposed to the use of pie charts for displaying 
percentages (van Belle, 2002, p. 160, for example, says "Never use a pie chart"), 
but Spence and Lewandowsky (1991) supported their use.  They even provided 
data from experiments that showed that pie charts aren’t nearly as bad as the 
critics claim. 
 
Bar graphs 
 
Bar graphs are probably the second most common way to display percentages.  
(But van Belle, 2002, doesn't like them either.)  The categories of the variable are 
usually indicated on the horizontal (X) axis and the percentage scale usually 
constitutes the vertical (Y) axis, with bars above each of the categories on the X 
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axis extending to a height corresponding to the relevant percentage on the Y 
axis.  The categories need not be in any particular order on the X axis, if the 
variable is a nominal variable such as Religious Affiliation.  But if the variable is 
an ordinal variable such as Socio-economic Status, the categories should be 
ordered from left to right on the X axis in increasing order of magnitude.  Here’s 
the 60%, 40% example as a bar graph: 
 

Percentage by Sex
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Here’s a bar graph for more than two categories.  The data are percentages of 
responses by pregnant mothers to the question "Reading the [Preparing to 
Parent] newsletters helped convince me to...".  Note that the bars are horizontal 
rather than vertical and the percentages do not add to 100 because more than 
one response is permitted. 
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56%
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Here’s a more complicated (but readable) bar graph for the “breakdown” of 
responses of two groups of pregnant women (those at risk for complications and 
those not at risk) in that same study: 
 

40%

36%

37%

35%

26%

24%

67%

56%

50%

43%

36%

27%

Cut back on alcohol."

Eat more healthy foods."

Take my prenatal vitamins

Breast feed my baby."

Keep all my prenatal clinic appointments."

Cut back on smoking."

0% 30% 60%

Percentage Agreeing  
 
For other examples of the use of bar graphs, see Keppel et al. (2008). 
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One of the least helpful percentage bar graphs I've ever seen can be 
downloaded from the StateMaster.com website.  It is concerned with the percent 
of current smokers in each of 49 states, as of the year 2004.  It lists those 
percents in decreasing order (from 27.5% for Kentucky to 10.4% for Utah; it also 
lists the District of Columbia, Puerto Rico, and the U.S. Virgin Islands, but not my 
home state of Hawaii!).  Each  percent is rounded to one place to the right of the 
decimal point, and there is a bar of corresponding horizontal length right next to 
each of those percents.   It is unhelpful because (a) the bars aren't really needed 
(the list of percents is sufficient); and (b) rounding the percents to one decimal 
place resulted unnecessarily in several ties (since the number of current smokers 
in each of the states and the population of each state are known or easily 
estimable, all of those ties could have been broken by carrying out the 
calculations to two decimal places rather than one). 
 
A research example that used both a pie chart and a bar graph 
 
On its website, the Intel©Technology Initiative provides the following example of 
the use of a pie chart and a bar graph for displaying counts and percentages 
obtained in a survey regarding attitudes toward biodiversity.  (Note that the bars 
in the bar graph are horizontal rather than vertical.  It doesn’t really matter.) 
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In their article, Spence and Lewandowsky (1991) reported results that indicated 
that bar graphs and pie charts were equally effective in displaying the key 
features of percentage data.  They provide various bar graphs for displaying four 
percentages (A = 10%; B = 20%; C = 40%; D = 30%).  Nice. 
 
In Chapter 2 I referred to Milo Schield and the W.M.  Keck Statistical Literacy 
Project at Augsburg College.  In a presentation he gave to the Section on 
Statistical Education of the American Statistical Association, Schield (2006) gave 
a critique of pie and bar percentage graphs that appeared in the newspaper USA 
Today.  I’ve seen many of those graphs; some are really bad. 
 
Other graphical techniques for displaying percentages 
 
Kastellec and Leoni (2007) provided several arguments and a great deal of 
evidence supporting the use of graphs to improve the presentation of findings in 
political science research.  In their article they include real-data examples for 
which they have converted tables into graphs.  Some of those examples deal 
with percentages or proportions presented through the use of mosaic plots, dot 
plots, advanced dot plots, or violin plots (those are their actual names!).  Rather 
than trying to explain those techniques here, I suggest that you read the 
Kastellec and Leoni article and see for yourself.  (They’re not just applicable to 
political science.)  Their article also has an extensive set of references pro and 
con the use of graphs. 
 
If you skipped Chapter 1 and you’re having difficulty distinguishing among 
percentages, proportions, and fractions, I suggest that you take a look at the 
British website www.active-maths.co.uk/.../fracdec_index.html, which lays out 
nicely how each relates to the others. 
 
And here’s another example of the graphing of percentages (taken from the 
Political Calculations website): 
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That graph contains a lot of interesting information (e.g., that the percentage of 
people aged 65-74 who have very high incomes is almost as high as the 
percentage of people aged 25-34--read along the right-hand edge of the graph), 
but I personally find it to be too “busy”, and it looks like Jaws!
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Chapter 7:  Percentage overlap of two frequency distributions 
 
 
One of the things that has concerned me most about statistical analysis over the 
years is the failure by some researchers to distinguish between random sampling 
and random assignment when analyzing data for the difference between two 
groups.  Whether they are comparing a randomly sampled group of men with a 
randomly sampled group of women, or a randomly assigned sample of 
experimental subjects with a randomly assigned  sample of control subjects (or, 
worse yet, two groups that have been neither randomly sampled nor randomly 
assigned), they invariably carry out a t-test of the statistical significance of the 
difference between the means for the two groups and/or construct a confidence 
interval for the corresponding "effect size". 
 
I am of course not the first person to be bothered by this.  The problem has been 
brought to the attention of readers of the methodological literature for many 
years.  [See, for example, Levin's (1993) comments regarding Shaver (1993);  
Lunneborg (2000);  Levin (2006); and Edgington & Onghena (2007).]  As I 
mentioned in an earlier chapter of this book, some researchers "regard" their 
non-randomly-sampled subjects as having been drawn from hypothetical 
populations of subjects "like these".  Some have never heard of randomization 
(permutation) tests for analyzing the data for the situation where you have 
random assignment but not random sampling.  Others have various arguments 
for using the t-test (e.g., that the t-test is often a good approximation to the 
randomization test); and still others don't seem to care. 
 
It occurred to me that there might be a way to create some sort of  relatively 
simple "all-purpose" statistic that could be used to compare two independent 
groups no matter how they were sampled or assigned (or just stumbled upon).  I 
have been drawn to two primary sources: 
 
1.  The age-old concept of a percentage. 
 
2.  Darlington's (1973) article in Psychological Bulletin on "ordinal dominance" (of 
one group over another).  [The matter of ordinal dominance was treated by 
Bamber (1975) in greater mathematical detail and in conjunction with the notion 
of receiver operating characteristic (ROC) curves, which are currently popular in 
epidemiological research.] 
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My recommendation 
 
Why not do as Darlington suggested and plot the data for Group 1 on the 
horizontal axis of a rectangular array, plot the data for Group 2 on the vertical 
axis, see how many times each of the observations in one of the groups (say 
Group 1) exceeds each of the observations in the other group, convert that to a 
percentage (he actually did everything in terms of proportions), and then do with 
that percentage whatever is warranted?  (Report it and quit; test it against a 
hypothesized percentage; put a confidence interval around it; whatever). 
 
Darlington's example [data taken from Siegel (1956)] 
 
The data for Group 1:  0, 5, 8, 8, 14, 15, 17, 19, 25 (horizontal axis) 
The data for Group 2:  3, 6, 10, 10, 11, 12, 13, 13, 16 (vertical axis) 
 
The layout: 
 
16       x x x 
13     x x x x x 
13     x x x x x 
12     x x x x x 
11     x x x x x 
10     x x x x x 
10     x x x x x 
6   x x x x x x x 
3  x x x x x x x x 
          
    0 5 8 8 14 15 17 19 25 

 
 
The number of times that an observation in Group 1 exceeded an observation in 
Group 2 was 48 (count the x’s).  The percentage of times was 48/81, or .593, or 
59.3%.  Let's call that Pe for "percentage exceeding".  [Darlington calculated that 
proportion (percentage) but didn't pursue it further.  He recommended the 
construction of an ordinal dominance curve through the layout, which is a type of 
cumulative frequency distribution similar to the cumulative frequency distribution 
used as the basis for the Kolmogorov-Smirnov test.]  
 
How does this differ from other suggestions? 
 
Comparing two independent groups by considering the degree of overlapping of 
their respective distributions appears to have originated with the work of Truman 
Kelley (1919), the well-known expert in educational measurement and statistics 
at the time, who was interested in the percentage of one normal distribution that 
was above the median of a second normal distribution.  [His paper on the topic 
was typographically botched by the Journal of Educational Psychology and was 
later (1920) reprinted in that journal in corrected form.]  The notion of 
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distributional overlap was subsequently picked up by Symonds (1930), who 
advocated the use of biserial r as an alternative to Kelley's measure, but he was 
taken to task by Tilton (1937) who argued for a different definition of percentage 
overlap that more clearly reflected the actual amount of overlap.  [Kelley had also 
suggested a method for correcting percentage overlap for unreliability.]  
Percentage overlap was subsequently further explored by Levy (1967), by Alf 
and Abrahams (1968), and by Elster and Dunnette (1971).   
 
In their more recent discussions of percentage overlap, Huberty and his 
colleagues (Huberty & Holmes, 1983; Huberty & Lowman, 2000; Hess, Olejnik, & 
Huberty, 2001; Huberty, 2002) extended the concept to that of "hit rate corrected 
for chance" [a statistic similar to Cohen's (1960) kappa] in which discriminant 
analysis or logistic regression analysis is employed in determining the success of 
"postdicting" original group membership.  (See also Preese, 1983; Campbell, 
2005; and Natesan & Thompson, 2007.) 
 
There is also the "binomial effect size display (BESD)" advocated by Rosenthal 
and Rubin  (1982) and the "probability of superior outcome" approach due to 
Grissom (1994).  BESD has been criticized because it involves the 
dichotomization of continuous variables (see the following chapter).  Grissom's 
statistic is likely to be particularly attractive to experimenters and meta-analysts, 
and in his article he includes a table that provides the probabilistic superiority 
equivalent to Cohen's (1988) d for values of d between .00 and 3.99 by intervals 
of .01. 
 
Most closely associated with the procedure proposed here (the use of Pe) is the 
work represented by a sequence of articles beginning with McGraw and Wong 
(1992) and extending through Cliff (1993), Vargha and Delaney (2000), Delaney 
and Vargha (2002), Feng and Cliff (2004), and Feng (2006). [Amazingly--to me, 
anyhow--the only citation to Darlington (1973) in any of those articles is by 
Delaney and Vargha in their 2002 article!]  McGraw and Wong were concerned 
with a "common language effect size" for comparing one group with another for 
continuous, normally distributed variables, and they provided a technique for so 
doing.  Cliff argued that many variables in the social sciences are not continuous, 
much less normal, and he advocated an ordinal measure d (for sample 
dominance; δ for population dominance). [This is not to be confused with 
Cohen's effect size d, which is appropriate for interval-scaled variables only.]  He 
(Cliff) defined d as the difference between the probability that an observation in 
Group 1 exceeds an observation in Group 2 and the probability that an 
observation in Group 2 exceeds an observation in Group 1.  In their two articles 
Vargha and Delaney sharpened the approach taken by McGraw and Wong, in 
the process of which they suggested a statistic, A, which is  equal to my Pe  if 
there are no ties between observations in Group 1 and observations in Group 2, 
but they didn't pursue it as a percentage that could be treated much like any 
other percentage.  Feng and Cliff, and Feng, reinforced Cliff's earlier arguments 
for preferring δ and d, which range from -1 to +1.  Vargha and Delaney's A 
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ranges from 0 to 1 (as do all proportions) and is algebraically equal to (1 + d)/2, 
i.e., it is a simple linear transformation of Cliff's measure.  The principal difference 
between Vargha and Delaney's A and Cliff's d, other than the range of values 
they can take on, is that A explicitly takes ties into account. 
 
Dichotomous outcomes 
 
The ordinal-dominance-based "percentage exceeding" measure also works for 
dichotomous dependent variables.  For the latter all one needs to do is dummy-
code (0,1) the outcome variable, string out the 0's followed by the 1's for Group 1 
on the horizontal axis, string out the 0's followed by the 1's for Group 2 on the 
vertical axis, count how many times a 1 for Group 1 appears in the body of the 
layout with a 0 for Group 2, and divide that count by n1 times n2, where n1 is the 
number of observations in Group 1 and n2 is the number of obervations in Group 
2.  Here is a simple hypothetical example: 
 
The data for Group 1:  0, 1, 1, 1 
The data for Group 2:  0, 0, 1, 1, 1 
 
The layout: 
 
1     
1     
0  x x x 
0  x x x 
0  x x x 
      
 0 1 1 1 

 
There are 9 instances of a 1 for Group 1 paired with a 0 for Group 2, out of 4X5 = 
20 total comparisons, yielding a "percentage exceeding" value of 9/20, or .45, or 
45%.   
 
Statistical inference 
 
For the Siegel/Darlington example, if the two groups had been simply randomly 
sampled from their respective populations, the inference of principal concern 
might be the establishment of a confidence interval around the sample Pe . [You 
get tests of hypotheses "for free" with confidence intervals for percentages, as I 
pointed out in Chapter 4.]  But there is a problem regarding the "n" for Pe.  In that 
example the sample percentage, 59.3, was obtained with n1 x n2 = 9x9 = 81 in 
the denominator.  81 is not the  sample size (the sum of the sample sizes for the 
two groups is only 9 + 9 = 18).  This problem had been recognized many years 
ago in research on the probability that Y is less than X, where Y and X are 
vectors of length n and m, respectively.  In articles beginning with Birnbaum and 
McCarty (1958) and extending through Owen, Craswell, and Hanson (1964), Ury 
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(1972), and others, a procedure for making inferences from the sample 
probabilities to the corresponding population probabilities was derived.   
 
The Owen, et al. and Ury articles are particularly helpful in that they include 
tables for constructing confidence intervals around a sample Pe .  For the 
Siegel/Darlington data, the confidence intervals are not very informative, since 
the 90% interval extends from 0 (complete overlap in the population) to 100 (no 
overlap), because of the small sample size. 
 
If the two groups had been randomly assigned to experimental treatments, but 
had not been randomly sampled, a randomization test is called for, with a 
"percentage exceeding" calculated for each re-randomization, and a 
determination made of where the observed Pe falls among all of the possible Pe's 
that could have been obtained under the (null) hypothesis that each observation 
would be the same no matter to which group the associated object (usually a 
person) happened to be assigned.   
 
For the small hypothetical example of 0's and 1's the same inferential choices are 
available, i.e., tests of hypotheses or confidence intervals for random sampling, 
and randomization tests for random assignment.  [There are confidence intervals 
associated with randomization tests, but they are very complicated.  See, for 
example, Garthwaite (1996).]  If those data were for a true experiment based 
upon a non-random sample, there are "9 choose 4" (the number of combinations 
of 9 things taken 4 at a time) = 126 randomizations that yield Pe 's ranging from  
0.00 (all four 0's in Group 1) to 80 (four 1's in Group 1 and only one 1 in Group 
2).  The 45 is not among the 10% least likely to have been obtained by chance, 
so there would not be a statistically significant treatment effect at the 10% level.  
(Again the sample size is very small.)  The distribution is as follows: 
 
Pe  frequency 
.00       1 
.05     22 
.20     58 
.45     40 
.80       5 
  ____ 
   126 
 
To illustrate the use of an arguably defensible approach to inference for the 
overlap of two groups that have been neither randomly sampled nor randomly 
assigned, I turn now to a set of data originally gathered by Ruback and Juieng 
(1997).  They were concerned with the problem of how much time drivers take to 
leave parking spaces after they return to their cars, especially if drivers of other 
cars are waiting to pull into those spaces.  They had data for 100 instances when 
other cars were waiting and 100 instances when other cars were not waiting.  On 
his statistical home page, Howell (2007) has excerpted from that data set 20 



2009-Knapp-Percentages.doc  Page 61  

instances of  "someone waiting" and 20 instances of “no one waiting”, in order to 
keep things manageable for the point he was trying to make about statistical 
inferences for two independent groups.  Here are the data (in seconds): 
 
Someone waiting (Group 1) 
49.48  43.30  85.97  46.92  49.18  79.30  47.35  46.52  59.68  42.89 
49.29  68.69  41.61  46.81  43.75  46.55  42.33  71.48  78.95  42.06 
 
No one waiting (Group 2)  
36.30  42.07  39.97  39.33  33.76  33.91  39.65  84.92  40.70  39.65 
39.48  35.38  75.07  36.46  38.73  33.88  34.39  60.52  53.63  50.62 
 
Here is the 20x20 dominance layout (I have rounded to the nearest tenth of a 
second in order to save room and not bothered to order each data set): 
 

36.3 x x x x x x x x x x x x x x x x x x x x 

42.1 x x x x x x x x x x x x  x x x x x x  

40.0 x x x x x x x x x x x x x x x x x x x x 

39.3 x x x x x x x x x x x x x x x x x x x x 

33.8 x x x x x x x x x x x x x x x x x x x x 

33.9 x x x x x x x x x x x x x x x x x x x x 

39.7 x x x x x x x x x x x x x x x x x x x x 

84.9   x   x               

40.7 x x x x x x x x x x x x x x x x x x x x 

39.7 x x x x x x x x x x x x x x x x x x x x 

39.5 x x x x x x x x x x x x x x x x x x x x 

35.4 x x x x x x x x x x x x x x x x x x x x 

75.1   x   x             x  

36.5 x x x x x x x x x x x x x x x x x x x x 

38.7 x x x x x x x x x x x x x x x x x x x x 

33.9 x x x x x x x x x x x x x x x x x x x x 

34.4 x x x x x x x x x x x x x x x x x x x x 

60.5   x   x      x      x x  

53.6   x   x   x   x      x x  

50.6   x   x   x   x      x x  

                     

 49.5 43.3 86.0 46.9 49.2 79.3 47.4 46.5 59.7 42.9 49.3 68.7 41.6 46.8 43.8 46.6 42.3 71.5 79.0 42.1
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For these data Pe is equal to 318/400 = 79.5%.  Referring to Table 1 in Ury 
(1972) a 90% confidence interval for πe  is found to extend from 79.5 – 36.0 to 
79.5 + 36.0, i.e., from 43.5 to 100.  A "null hypothesis" of a 50% proportion 
overlap in the population could not be rejected. 
 
Howell actually carried out a randomization test for the time measures, assuming 
something like a natural experiment having taken place (without the random 
assignment, which would have been logistically difficult if not impossible to carry 
out).  Based upon a random sample of 5000 of the 1.3785 x 1011  possible re-
randomizations he found that there was a statistically significant difference at the 
5% level (one-tailed test) between the two groups, with longer times taken when 
there was someone waiting.   He was bothered by the effect that one or two 
outliers had on the results, however, and he discussed alternative analyses that 
might minimize their influence.    
     
Disadvantages of the "percentage exceeding" approach 
 
The foregoing discussion was concerned with the postulation of Pe as a possibly 
useful measure of the overlap of the frequency distributions for two independent 
groups.  But every such measure has weaknesses.  The principal disadvantage 
of Pe is that it ignores the actual magnitudes of the n1 x n2 pairwise differences, 
and any statistical inferences based upon it for continuous distributions are 
therefore likely to suffer from lower power and less precise confidence intervals.  
A second disadvantage is that there is presently no computer program available 
for calculating Pe .  [I'm not very good at writing computer programs, but I think 
that somebody more familiar with Excel than I am would have no trouble dashing 
one off.  The layouts used in the two examples in this paper were actually 
prepared in Excel and "pasted" into a Word document.]  Another disadvantage is 
that it is not (at least not yet) generalizable to two dependent groups, more than 
two groups, or multiple dependent variables.   
 
A final note 
 
Throughout this chapter I have referred to the 10% significance level and the 
90% confidence coefficient.  The choice of significance level or confidence 
coefficient is of course entirely up to the researcher and should reflect his/her 
degree of willingness to be wrong when making sample-to-population inferences.  
I kinda like the 10% level and 90% confidence for a variety of reasons.  First of 
all, I think you might want to give up a little on Type I error in order to pick up a 
little extra power (and give up a little precision) that way.  Secondly, as illustrated 
above, more stringent confidence coefficients often lead to intervals that don't cut 
down very much on the entire scale space.  And then there is my favorite reason 
that may have occurred to others.  When checking my credit card monthly 
statement (usually by hand, since I like the mental exercise), if I get the units 
(cents) digit to agree I often assume that the totals will agree.  If they agree, 
Visa's "null hypothesis" doesn't get rejected when perhaps it should be rejected.  
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If they don't agree, if I reject Visa's total, and if it turns out that Visa is right, I 
have a 10% chance of having made a Type I error, and I waste time needlessly 
re-calculating.  Does that make sense? 
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Chapter 8:  Dichotomizing continuous variables:  Good idea or bad idea? 
 
 
A very bad idea, or at least so say Cohen (1983);  Hunter and Schmidt (1990);  
MacCallum, Zhang,  Preacher,  and Rucker (2002);  Streiner, 2002; Owen and 
Froman (2005); Royston, Altman, and Sauerbrei (2006); Altman and Royston 
(2006); Taylor, West, and Aiken (2006); and others.  [2006 was a good year for 
anti-dichotomization articles!]  But it’s done all the time.  Is there no good defense 
for it?  In what follows I’ll try to point out some of its (admittedly few) advantages 
and its (unfortunately many) disadvantages. 
 
Here are a few advantages: 
 
Simplicity of description 
 
When it comes to investigating the relationship between two variables X and Y, 
nothing is simpler than dichotomizing both variables at their medians and talking 
about what % were above the median on X and Y, what % were below the 
median on X and Y, what % were above on X but below on Y, and what % were 
below on X but above on Y.  Having to plot the continuous data, trying to figure 
out whether or not the plot is “linear enough” to use Pearson r, worrying about 
outliers, etc.,  is a pain. 
 
Simplicity of inference 
 
Percent of agreement, i.e., the % for both above plus the % for both below, can 
be treated just like a simple percentage (see Chapter 4).  The “single-best” point 
estimate of the population percentage of agreement is the sample percentage of 
agreement, the confidence interval for the population percentage is straight-
forward, and so is the hypothesis test. 
 
Applicability to “crazy” distributions 
 
There are some frequency distributions of continuous or "near-continuous" 
variables that are so unusual that dichotomization is often used in order to make 
any sense out of the data.  In the following sections I would like to consider two 
of them. 
 
Number of cigarettes smoked per day 
 
When people are asked whether or not they smoke cigarettes and, if so, 
approximately how many they smoke each day, the frequency distribution has a 
big spike at 0, lesser spikes at 20 (the one-pack-a-day people), 40 (two packs), 
and 60 (three packs), but also some small spikes at 10 (half pack), 30 (pack and 
a half), etc.  Some people smoke (or say they smoke) just one cigarette per day, 
but hardly anyone reports 3, 7, 11 or other non-divisors of 20.  In Table 1, below, 
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I have provided a frequency distribution for 5209 participants in the well-known 
Framingham Heart Study at Time 7 (which is Year 14--around 1960--of that 
study).   I have also included some descriptive statistics for that distribution, in 
order to summarize its central tendency, variability, skewness, and kurtosis.  
(The distribution and all calculations based upon it were carried out in Excel, 
carried out to far too many decimal places!) 
 
Note some of the interesting features.  The distribution exhibits the "crazy" 
pattern indicated in the previous paragraph, with several holes (particularly at the 
high end) and with heapings at observations ending in 0 and 5.  It has a mode 
and a median of 0; a mean of about 9 1/2; standard deviation of about 13; 
skewness between 1 and 2; and kurtosis of approximately that same magnitude.  
[At first I thought that the 90 (4 1/2 packs per day!) was an error and should have 
been 9, but there was more than one such observation in the full data set.] 
 
I am of course not the first person to study the frequency distribution of number 
of cigarettes smoked per day (see, for example, Klesges, Debon, & Ray, 1995 
and the references they cite). 
 
Table 1: Data for Year 14 of the Framingham Heart Study 
 
   # Cigs            Frequency    

0 2087     
1 73   Mean 9.477795
2 44    
3 65   Median 0
4 41   Mode 0
5 32   Standard Dev. 13.18546
6 30   Variance 173.8564
7 26   Kurtosis 1.291503
8 19   Skewness 1.334515
9 15   Range 90

10 130   Minimum 0
11 15   Maximum 90
12 26   Sum 37134
13 6   Count 3918
14 6   Missing 1291
15 111     
16 9     
17 13     
18 19     
19 6     
20 581     
21 0     
22 10     
23 1     
24 2     
25 53     
26 0     
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27 9     
28 0     
29 1     
30 225     
31 0     
32 0     
33 0     
34 0     
35 22     
36 0     
37 0     
38 0     
39 0     
40 193     
41 0     
42 1     
43 0     
44 0     
45 6     
46 0     
47 0     
48 0     
49 0     
50 19     
51 0     
52 0     
53 0     
54 0     
55 2     
56 0     
57 0     
58 0     
59 0     
60 17     
61 0     
62 0     
63 0     
64 0     
65 0     
66 0     
67 0     
68 0     
69 0     
70 1     
71 0     
72 0     
73 0     
74 0     
75 0     
76 0     
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77 0     
78 0     
79 0     
80 1     
81 0     
82 0     
83 0     
84 0     
85 0     
86 0     
87 0     
88 0     
89 0     
90 1     

 
So what?  That distribution fairly cries out to be dichotomized.  But where to cut?  
The obvious place is between 0 and 1, so that all of the people who have 
"scores" of 0 can be called "non-smokers" and all of the people who have 
"scores" from 1 to 90 can be called "smokers".  For the data in Table1 there were 
2087 non-smokers out of 2727 non-missing-data persons, or 76.5%, which 
means there were 640 smokers, or 23.5%.  [As usual, "missing" causes serious 
problems.  I don't know why there were so many participants who didn't respond 
to the question.  Can you speculate why?] 
 
Klondike 
 
Just about every computer that has Microsoft Windows as an operating system 
includes as part of a free software package the solitaire game of Klondike.  It has 
a number of versions, but the one that is most interesting (to me) is the "turn-one, 
single pass through the pack" version.  The object is to play as many cards as 
possible on the foundation piles of ace through king of each of the four suits.  
The possible "scores" (number of cards played to those piles) range from 0 to 52.  
Of considerable interest (again, to me, anyhow) is the frequency distribution of 
those scores.  One would hope that the distribution could be derived 
mathematically, but since there is a deterministic aspect (skill) to the game (in 
addition to the stochastic aspect) and things can get very complicated very 
quickly, all such efforts to do so appear to have been unsuccessful.  As the 
authors of a recent paper on solitaire (Yan, et al., 2005) put it: " It is one of the 
embarrassments of applied mathematics that we cannot determine the odds of 
winning the common game of solitaire."  (p. 1554)  Some probabilities have been 
mathematically derived for some versions of Klondike, e.g., the probability of 
being unable to play a single card in the "turn three, unlimited number of passes" 
version (see Latif, 2004). 
 
I recently completed 1000 games of "turn-one, single-pass" Klondike [we retired 
professors have lots of time on our hands!], and the distribution of my scores is 
displayed in Table 2, below (summary descriptive statistics have been added, all 
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from Excel).  Note the long tail to the right with small frequencies between 19 and 
31, a big hole between 31 and 52, and heaping on 52.  (Once you're able to play 
approximately half of the deck on the foundation piles you can usually figure out 
a way to play the entire deck.)  I won (got a score of 52) 36 times out of 1000 
tries, for a success rate of 3.6%.  [Note also the paucity of scores of 0.  I got only 
two of them in 1000 tries.  It's very unusual to not be able to play at least one 
card on the foundation piles.  And it's positively re-inforcing each time you play a 
card there.  B.F. Skinner would be pleased!] 
 
Table 2:  Results of 1000 games of Klondike 
 

Score Frequency    
0 2     
1 23   Mean 9.687
2 37    
3 66   Median 7
4 89   Mode 5
5 117   Standard Dev. 9.495114
6 88   Variance 90.15719
7 110   Kurtosis 11.5888
8 72   Skewness 3.242691
9 68   Range 52

10 64   Minimum 0
11 40   Maximum 52
12 34   Sum 9687
13 34   Count 1000
14 18     
15 22     
16 11     
17 21     
18 11     
19 6     
20 4     
21 6     
22 6     
23 2     
24 1     
25 3     
26 3     
27 0     
28 2     
29 2     
30 1     
31 1     
32 0     
33 0     
34 0     
35 0     
36 0     
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37 0     
38 0     
39 0     
40 0     
41 0     
42 0     
43 0     
44 0     
45 0     
46 0     
47 0     
48 0     
49 0     
50 0     
51 0     
52 36     

 
Again, so what?  This distribution also cries out to be dichotomized, but where?  
If all you care about is winning (being able to play all 52 cards on the foundation 
piles) the obvious place to cut is just below 52, call the winners (36 of them) 1's 
and the losers 0's, and talk about the percentage of winners (or, alternatively, the 
probability of winning), which is approximately 4%.  Another reasonable 
possibility is to dichotomize at the median (of 7), with half of the resulting scores 
below that number and the other half above that number.  Klondike is 
occasionally played competitively, so if you are able to play 7 or more cards you 
have approximately a 50% chance of beating your opponent.  
 
[I just finished another 1000 games, with essentially the same results:  41 wins 
(4.1%), a mean of about 10; etc.] 
 
Although he is generally opposed to dichotomizing, Streiner (2002) referred to 
situations where it might be OK, e.g., for highly skewed distributions such as the 
above or for non-linearly-related variables.   [I love the title of his article!] 
 
Now for a few of the disadvantages: 
 
Loss of information 
 
The first thing that’s wrong with dichotomization is a loss of information.  For the 
original variable, “number of cigarettes smoked per day”, we have a pretty good 
idea of the extent to which various people smoke, despite its “crazy” distribution.  
For the dichotomy, all we know is whether or not they smoke. 
 
Inappropriate pooling of people 
 
For the “smoker vs.non-smoker” dichotomy there is no distinction made between 
someone who smokes one cigarette per day and someone who smokes four or 
more packs per day.  Or, switching examples from smoking to age (above or 
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below age 21, say), height (above or below 5’7”), or weight (above or below 
130#), the problem could be even worse. 
 
 
 
Decreased precision or power 
 
The principal objective of interval estimation is to construct a rather tight interval 
around the sample statistic so that the inference from statistic to corresponding 
parameter is strong.  Confidence intervals for percentages derived from 
dichotomization are generally less precise than their counterparts for continuous 
variables.  The situation for hypothesis testing is similar.  If the null hypothesis is 
false you would like to have a high probability of rejecting it in favor of the 
alternative hypothesis, i.e., high power.  The power for dichotomies is generally 
lower than the power for continuous variables.  (But see Owen & Froman, 2005 
for a counter-example.) 
 
You will find discussions of additional disdvantages to dichotomization in the 
references cited at the beginning of this chapter. 
 
So what’s a researcher to do? 
 
There is no substitute for common sense applied to the situation in hand. 
A good rule to keep in mind is “when tempted to dichotomize, don’t”, UNLESS 
you have one or more “crazy” continuous distributions to contend with. 
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Chapter 9:   Percentages and reliability 
 
 
“Reliability and validity” are the “Rosencranz  and Guildenstern” of scientific 
measurement.  In Shakespeare’s Hamlet people couldn’t say one name without 
saying the other, and the two of them were always being confused with one 
another.  Similarly, in discussing the properties of good measuring instruments, 
“reliability and validity” often come out as a single word; and some people 
confuse the two. 
 
What is the difference between reliability and validity? 
 
Simply put, reliability has to do with consistency; validity has to do with 
relevance.  An instrument might yield consistent results from “measure” to “re-
measure”, yet not be measuring what you want it to measure.  In this chapter I 
shall concentrate on reliability, in which I am deeply interested.  Validity, though 
more important (what good is it to have a consistent instrument if it doesn’t 
measure the right thing?), ultimately comes down to a matter of expert judgment, 
in my opinion, despite all of the various types of validity that you read about. 
 
How do percentages get into the picture? 
 
In the previous chapter I referred to a couple of advantages of dichotomies, viz., 
their simplicity for description and for inference.  Consider the typical classroom 
spelling test for which 65% is “passing”, i.e., in order to pass the test a student 
must be able to spell at least 65% of the words correctly.  (We shall ignore for the 
moment why 65%, whether the words are dictated or whether the correct spelling 
is to be selected from among common misspellings, and the like.  Those matters 
are more important for validity.) 
 
Mary takes a test consisting of 200 words and she gets 63% right (126 out of the 
200).  You’re concerned that those particular 200 words might contain too many 
“sticklers” and she really deserved to get 65% or more (at least 130 out of the 
200; she only missed the “cutoff” by four words).  Suppose that the 200 words on 
the test had been randomly drawn from an unabridged dictionary.  You decide to 
randomly draw another set of words from that same dictionary and give Mary that 
“parallel form”.  This time she gets 61% right.  You now tell her that she has 
failed the test, since she got less than 65% on both forms. 
 
Types of reliability 
 
The example just presented referred to parallel forms.  That is one type of 
reliability.  In order to investigate the reliability of a measuring instrument we 
construct two parallel forms of the instrument, administer both forms to a group of 
people, and determine the percentage of people who “pass” both forms plus the 
percentage of people who “fail” both forms: our old friend, percent agreement.  
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Percent agreement is an indicator of how consistently the instrument divides 
people into “passers” and “failers”. 
 
But suppose that you have only one form of the test, not two.  You can 
administer that form twice to the same people and again determine the % who 
pass both times plus the % who fail both times.  This test/re-test approach is not 
quite as good as parallel forms, since the people might “parrot  back” at Time 2 
what they say at Time 1, therefore endowing the instrument with artificially high 
reliability. 
 
Or suppose that you’re interested in the reliability of rating essays.  You 
administer the essay test just once, but you ask the teacher to rate the students’ 
essays twice (so-called intra-rater reliability) or ask two different teachers to rate 
the students’ essays once each (inter-rater reliability).  Percent agreement is 
again a good way to determine the extent to which the two sets of ratings agree.  
Robinson (1957) discussed the advantages and disadvantages of percent 
agreement vs. traditional Pearson correlations for measuring intra-rater or inter-
rater reliability. 
 
Got the idea? 
 
Kappa 
 
There is a strange (again, in my opinion) statistic called kappa  (Cohen, 1960), 
which is percent agreement corrected for chance.  Its formula is: 
 
κ = (P - Pc)/(100 - Pc) 
 
where P is actual percent agreement and Pc is the percent agreement that is 
expected “by chance”.  So if two raters of essays have 80% agreement using a 
four-point rating scale, and if they were both susceptible to occasional random 
ratings (without reading the essay itself?), they could have (1/4)(1/4) = 1/16 = 
6.25% agreement “by chance”.  That would be Pc.  Therefore, κ would be (80 – 
6.25)/(100 – 6.25) = 78.67%. 
 
There are two reasons why I think kappa is strange.  First of all, I don’t think 
raters rate “by chance”.  Secondly, even if they do, a researcher need only 
demand that the percent agreement be higher in order to compensate for same.  
[Hutchinson (1993) presented an argument for the use of tetrachoric correlation 
rather than kappa.]  Landis and Koch (1977) claim that a kappa of  61% to 80% , 
for example, is indicative of “substantial” agreement.  Why not up those numbers 
by 10% and define percent agreement of 71% to 90% as “substantial”?   But 
kappa is VERY commonly used; see Fleiss et al. (2003) and some of the 
references that they cite.   
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One very interesting non-reliability use of kappa is in the detection of possible 
cheating on an examination (Sotaridona, 2006).  Now there’s a context in which 
there is indeed liable to be a great deal of “chance” going on! 
  
Criterion-referenced vs. norm-referenced measurement 
 
The previous section described various ways for determining the reliability of an 
instrument where there is some sort of cutoff point above which there is 
“success” and below which there is “failure”.  Such instruments are called 
criterion-referenced.  On the other hand, instruments such as the SAT or the 
GRE do not have cutoff points; they are not “passed” or “failed”.  Scores on those 
tests are interpreted relative to one another rather than relative to a cutoff point.  
They’re called norm-referenced.  [Be careful not to confuse norms with 
standards.  Norms are what are; standards are what should be.] 
 
There are several other contributions in the criterion-referenced measurement 
literature regarding the use of percentages as indicators of the reliability of such 
instruments.  For example, in building upon the work of Hambleton and Novick 
(1973), Subkoviak (1976), and others, Smith (2003) and, later, Walker (2005) 
advocated the use of the standard error of a percentage in the estimation of the 
reliability of a classroom test  (a potentially different reliability for each student).  
The formula for the standard error becomes √P(100-P)/k, where P is the % of 
items answered correctly and k is the number of items (the “item sample size”, 
analogous to n, the traditional “people sample size”).  For example, if John 
answered correctly 16 out of 20 items, his P is 80%, and his standard error is 
√80(100-80)/20, which is about 9%.  If Mary answered correctly 32 out of 40 
items correctly (not necessarily items on the same test), her P is also 80% but 
her standard error is √80(100-80)/40, which is about 6 1/3%.  Therefore the 
evidence is more reliable for Mary than for John.  The problem, however, is that 
the traditional formula for the standard error of a percentage assumes that the 
number of observations that contribute to the percentage (people, items,…, 
whatever) are independent of one another.  That is much more defensible when 
people are sampled than when items are sampled.   
 
Chase (1996) went one step further by discussing a method for estimating the 
reliability of a criterion-referenced instrument test  before it's ever administered! 
 
Miscellany 
 
There have been a number of other contributions in the literature regarding the 
uses of percentages in conjunction with the estimation of the reliability of a 
measuring instrument.  Here are a few examples: 
 
Barnette’s (2005) Excel program for computing confidence intervals for various 
reliability coefficients includes the case of percentages. 
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Feldt (1996) provides formulas for confidence intervals around a proportion of 
mastery. 
 
Guttman (1946) discussed a method for determining a lower bound for the 
reliability of an instrument that produced qualitative (nominal or ordinal) data. 
 
I (Knapp, 1977b) proposed a technique for determining the reliability of a single 
test item that has been dichotomously scored.  
 
Much later I (Knapp, 2009) I put together a whole book on reliability, some of 
which was concerned with the use of percentages as indicators of the reliability 
of a measuring instrument.
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Chapter 10:   Wrap-up 
 
 
In this book I have tried to explain why I think that percentages are “the most 
useful statistics ever invented”.  I hope you agree.  But even if you don’t, I hope 
you now know a lot more about percentages than you did when you started 
reading the book. 
 
I also said I would tell you why 153 is one of my favorite numbers.  It comes from 
the New Testament in a passage that refers to a miracle that Jesus performed 
when he made it possible for his apostles to catch a boatload of fish after they 
had caught nothing all day long.  The evangelists claim that the catch consisted 
of 153 large fish.  Who counted them?  Was it exactly 153 fish? 
 
I would like to close with a brief annotated bibliography of references that I did 
not get an opportunity to cite in the previous nine chapters.  Here it is (the full 
bibliographical information can be found in the References section that follows 
the conclusion of this chapter):  
 
Aiken, et al.  (2003).  This article in the Journal of the American Medical 
Association about the relationship between nurse educational level and patient 
mortality has tons of percentages in its various tables.  (Hospital was the unit of 
analysis; n = 168 of them.) There were several letters to the editor of that journal 
in early 2004 regarding the article.  I suggest that you read the article, the letters, 
and the rejoinder by Aiken et al., and make your own judgment.  As they say on 
the Fox News Channel, “I report, you decide”.   
 
Azar (2004, 2007, 2008) has written several papers on “percentage thinking”.  
Economists claim that many people behave irrationally when making shopping 
saving decisions by focusing on percentage saving rather than absolute saving.  
He cites the classic example (Thaler, 1980;   Darke and Freedman, 1993) of a 
person who  exerts more effort to save $5 on a $25 radio than on a $500 TV.  It’s 
the same $5.  (See also Chen & Rao, 2007, for comparable examples.)   
Fascinating stuff. 
 
Freedman, Pisani, & Purves (2007).  This is far and away the best statistics 
textbook ever written (in my opinion), the illustrations are almost as hilarious as 
those in Darrell Huff’s books, and there is some great stuff on percentages.  (My 
favorite illustration is a cartoon on page 376 in which a prospective voter says to 
a politician “I’m behind you 100 percent, plus or minus 3 percent or so” .)  Check 
it out! 
 
Gonick and Smith (1993).  If you want to learn statistics on your own, and have a 
lot of laughs in the process, this book is for you.  Through a combination of 
words, formulas, and cartoons (mostly cartoons, by Gonick) the authors 
summarize nicely most of the important concepts in statistics, both descriptive 
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and inferential.  My favorite cartoon in the book is the one on page 2 picturing a 
statistician dining with his date.  He says to her:  “I’m 95% confident that tonight’s 
soup has probability between 73% and 77% of being really delicious!”  They even 
discuss the probability of a disease given a positive diagnosis (pp. 46-50) and the 
estimation of confidence intervals for percentages--actually proportions (pp. 114-
127) that we talked about in Chapters 3 and Chapters 5, respectively, in this 
book (but without the great illustrations that Gonick provides).  
 
Paulos (2008).  In this companion to his Innumeracy book (he really has a way 
with words!),  Paulos claims that the arguments for the existence of God don’t 
add up, and he closes the book with the tongue-in-cheek claim that “96.39 per 
cent” of us want to have a world that is closer to a heaven on earth than it is now.  
Amen. 
 
Resis (1978).  In what must be one of the most important applications of 
percentages known to mankind, Resis described a meeting in 1944 in which 
Winston Churchill suggested to Josef Stalin a way of dividing up European 
spheres of influence between Britain and Russia.  On page 368 he cited 
Churchill’s actual words, as follows: 
 

 
 
For some additional interesting information regarding this matter, just  google 
“percentages agreement” [not to be confused with "percent agreement", which is 
a way of determining reliability]). 
 
Robbins & Robbins (2003a and 2003b).  This pair of articles represents one of 
the strangest, yet interesting, applications of percentages I have ever seen.  The 
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authors have collected data for estimating the percentage of people (both men 
and women) who have hair of various lengths!  Read both articles.  You’ll like 
them. 
 
Thibadeau (2000).  It’s hard to know whether Thibadeau is serious or not when 
he presents his arguments for doing away with all taxes and replacing all paper 
money and coins with electronic currency.  But this is a delightful read (free, on 
the internet) and he has several interesting comments regarding percentages.  
My favorite one is in the section on sales taxes, where he says:  
 

“ …sales tax is almost always a strange percentage like 6% or 7%.  If 
something costs $1, we have to take the time to figure out whether the guy 
is giving the proper change on $1.07 for the five dollar bill.   Most people 
don’t check. “ (p. 20) 

 
 
Some great websites that I haven’t previously mentioned: 
 
1.  RobertNiles.com was developed by Robert Niles and is intended primarily for 
journalists who need to know more about mathematics and statistics.  He has a 
particularly nice discussion of percentages. 
 
2.  Dr. Ray L. Winstead’s website has a “Percentage metric time” clock that tells 
you at any time of any day what percentage of the day (to four decimal places!) 
has transpired.  How about that?! 
 
3.  The website for the physics department at Bellevue College (its name is 
scidiv.bellevuecollege.edu/Physics/.../F-Uncert-Percent.html) calculates for you 
both the “absolute percentage certainty” and the “relative percentage certainty” of 
any obtained measurement.  All you need do is input the measurement and its 
margin of error.  Nice. 
 
4.  The Healthy People 2010 website has all sorts of percentages among its 
goals for the year 2010.  For example, it claims that 65% of us are presently 
exposed to second-hand smoke [I think that is too high]; its goal is to reduce that 
to 45%. 
 
5.  The CartoonStock website has some great percentage cartoons.  Here are 
two of the best (be sure to “zoom” in at 200%): 
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6.  There is a downloadable file called Baker’s Percentage (just google those 
words) that provides the ingredients for various recipes as percentages of the 
weight of the principal ingredient (usually flour).  Unfortunately (in my opinion) all 
of the weights of the ingredients are initially given in grams rather than in ounces. 
 
7.  www.StatPages.org  is John Pezzullo’s marvelous website, which will refer 
you to sources for calculating just about any descriptive statistic you might be 
interested in, as well as carry out a variety of inferential procedures. 
 
 
It’s been fun for me.  I hope it has been for you also.
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