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Abstract

Spencer-Brown advanced a provocative thesis in Probability and Scientific
Inference (1957). From experiments with early “chance machines,” he
argued that a fundamental flaw exists in our view of randomness. Long
sequences of random digits generated by a variety of methods show long-
term declines in repetition of rare items or sequences.

I revisit this neglected topic and show that a variety of modern random
number generators (including pseudo-random algorithms) exhibit this same
property. For simple schemes the decline is short and the system soon
lapses into classic equipartition. For sufficiently complex schemes the
decline continues indefinitely. Standard tests like DIEHARD do not detect
this pattern.

I suggest the principle of maximum entropy as the underlying cause. Similar
decline patterns show up empirically in epidemiology, Web traffic, and
other probabilistic settings.
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1.  Spencer-Brown’s Critique of Probability

In the 1950’s, experiments in extra-sensory perception (ESP) were still novel
enough that they could be written up in Nature and other reputable journals.
However, several decades of work on the subject had so far failed to produce a
convincing demonstration of a stable talent for clairvoyance or telepathy or any
other variant of ESP, and hopes were fading that any would be found.

George Spencer-Brown, who did his post-graduate work under both Bertrand
Russell and Ludwig Wittgenstein, considered the possible reasons for the failure
of ESP experiments and turned them into a novel critique of the classical
foundations of probability. His argument first appeared in Nature in 1953, then as
a monograph, Probability and Scientific Inference (1957).

The puzzle, as Spencer-Brown observed, wasn’t that ESP experiments were
unrepeatable. It was that they failed to be repeatable in much the same way every
time. Their failure was itself a predictable pattern. Initially the subject would score
well above chance, but after a few dozen trials, or a few hundred, the margin of
superiority and the significance of the subject’s score would both sink. Eventually
many subjects lapsed into ‘psi-missing,’ that is, their rate of successful guessing
would be not at, but rather significantly below the rate predicted by classical
chance. According to ESP researcher Robert Thouless, such declines had been
observed since sometime in the 19th century:

It is not easy to give a date for the first discovery, although they were first singled out
as a significant feature of the ESP response by Rhine in his 1934 book Extra-
Sensory Perception. They had, however, been noticed earlier. Of the Creery sisters,
for example, it was reported that ‘the average of successes gradually declined’
(Gurney et al., 1886). A similar decline was also pointed out by Estabrooks in an
early study of ESP (Estabrooks, 1927). Since then, decline effects (both episodic and
long-period) have been found by so many workers that one must regard decline as
one of the best attested and most often repeated observations in ESP research.

The accepted explanation for this pattern (among scientists who were not ESP
enthusiasts) was the ‘file drawer’ effect, in which successful experiments with
high significance were reported, but unsuccessful ones with low significance were
simply tossed aside or put in a file drawer.  Extending or repeating the occasional
high-significance result would prove impossible and average scores would appear
to decline, but overall, there was no such thing as a decline in guessing ability.
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ESP surplus hits with increasing 
number of trials (Rhine 1940)

0.1%

1.0%

10.0%

100.0%

10 10,000 10,000,000

Total trials (all subjects)

Pe
rc

en
t s

ur
pl

us
 h

its

Actual

Decline model

In 1940, Joseph Banks Rhine constructed a table summarizing dozens of different
ESP experiments. Rhine was and remains today the best-known writer on the
scientific study of ESP. The purpose of Rhine’s meta-analysis was to compare
various test schemes to see which succeeded best at delaying the eventual lapse of
the subject’s talent. What is interesting is that if we simply take the entire set of
results, and plot the decline of significance on a log-log scale, we get something
close to a straight line, as shown above. This doesn’t follow in any obvious way
from the ‘file drawer’ effect.

Spencer-Brown hypothesized that the failure to find convincing evidence of ESP
ironically exposed a real scientific puzzle worth solving. If there was no ESP, then
there must be something lacking in probability theory.

This is quite plausible in light of the fact that psychical research is perhaps the only
present-day science which has looked for something (not already known to exist) for
sixty years and failed to find it; and if it happened that what it was looking for did not
exist, we should have in effect sixty years of pure probability experiments which there is
no reason to suppose should have fared, in terms of significance, better than the best
(and the worst) of all the pure probability experiments down the ages. It would thus be
its remarkable additions to our experimental picture of pure probability for which we
owe the most thanks to modern psychical research.
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The book and Nature essay did not have much impact compared with his later
classic Laws of Form, but the questions Spencer-Brown raised still remain
relevant today.

1.1 Philosophical Concerns About Classical Probability

Spencer-Brown attacked conventional probability from two angles. First, he
attempted to demonstrate its philosophical contradictions and inadequate
foundation. This approach owed something to the influence of Wittgenstein. One
especially useful line of inquiry, according to Spencer-Brown, is the proper way to
distinguish between ‘atomic’ and ‘molecular’ events. Classical probability focuses
on the ‘atomic’ level. For example, if we throw a six-sided die 100 times, we treat
this as 100 independent events. To work out the likelihood of two successive
results of ‘6’, we combine these ‘atomic’ events. But we do not, as a rule, make
observations of ‘molecular’ events to see if their frequencies actually conform to
theory. We are confident that for a fair die, the six sides will over a long span of
time come up equally often. This is thought to guarantee that over an even longer
span, all possible permutations on the ‘molecular’ level will do so as well.

But this is begging the question, according to Spencer-Brown. It assumes
independence instead of proving it empirically. A non-classical theoretical
framework may give a different answer, one that fits the actual facts much better.
By choosing to experiment and reason within the classical framework, we set up
the expectation of a certain kind of result.

It was widely understood in the 1950’s that the state of the art in ‘chance
machines’ at that time was quite primitive. Mechanical methods like applying a
strobe light to a spinning wheel necessarily involved many different risks of bias.
In practice, any project of generating random numbers involved re-processing
whatever sequences were produced, by some kind of algorithm, and throwing out
some of the data. For example the first attempt by the RAND Corporation in 1955
to publish a table of one million random digits involved extensive re-processing,
as the original data set showed unacceptably large bias in variables as simple as
the balance between even and odd values. It was specifically noted by the RAND
researchers that the various biases evolved over time: ‘Apparently the machine
had been running down despite the fact that periodic electronic checks indicated it
had remained in good order.’

This kind of problem would show up in any long series of machine-generated
‘atomic’ events; the derived, ‘molecular’ outcomes would not show up in equal
numbers. There would be an observable bias, typically one that changed between
the beginning and the end of the run. The more complex the ‘molecular’ event, the
greater these biases tended to be.
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The philosophical perspective that probability is genuinely ‘atomic’ influenced
what data researchers would do with these results. Because early ‘chance
machines’ were not able to produce truly unbiased data, the standard for genuine
randomness had to be set fairly low. Researchers gradually abandoned the effort to
purge randomly generated sequences of all discernable bias, seeing this as
practically impossible and theoretically unnecessary. They settled instead for
monitoring and controlling bias in the ‘atomic’ events, or at most for the very
simplest ‘molecular’ events. But what they could have done, according to
Spencer-Brown, was to reconsider whether their concepts regarding randomness
were correct, and to look more carefully at the raw output from the machines for
clues about how randomness really works.

There is no reason in principle why a series cannot gradually become less and less
biased at the ‘atomic’ level, but remain biased on the various higher ‘molecular’
levels for arbitrarily long spans.

For example, in throwing a six-sided die it is theoretically possible to arrange the
results such that there are nearly equal numbers of results ‘1’ through ‘6’, and at
the same time a growing shortage of ‘11’ through ‘66’ relative to results like ‘25’
or ‘34’. This particular effect has actually been observed by gamblers, and
reproduced as part of the work described in this paper. Many similar kinds of
decline in the rarer ‘molecular’ outcomes have also been observed as described
below.

1.2 The Empirical Case in 1957

There was a substantial body of evidence available to Spencer-Brown. After
noting a variety of cases like those mentioned above in which ‘chance machines’
produced a certain predictable pattern of bias similar to the ESP decline effect,
Spencer-Brown proceeded to run his own series of experiments. These were of the
general ESP type, but without a human test subject, and showed the same result.
For example, instead of having a subject guess the values of a deck of cards,
Spencer-Brown proposed that we use a second deck of cards to simulate the
guesses. The question of the subject growing fatigued or having an erratic ESP
talent is then moot, and the whole topic of ESP is irrelevant.

These experiments pointed to a common anomaly: rare items would cluster near
the start, then gradually grow rarer. The simplest way to demonstrate this trend,
given the diverse range of experiments to be considered, is to compare quartiles.
Even in a short test with a few hundred trials, the first quartile of the test will tend
to have significantly more rare items (p < 0.05) than the last quartile. Critics
attacked the experimental aspect of Spencer-Brown’s work starting with the
Nature paper, but then a controlled test performed by a critic showed the same
result.
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2. More  Recent Empirical Cases in Nonlinear Probability

Spencer-Brown’s theorizing did not produce much of a response. His non-classical, non-
linear framework of probability was, so to speak, childless. But explaining failed ESP
experiments is far from the only application of his idea. There are dozens of what we might
call ‘orphan’ laws in need of explanation, ad hoc empirical patterns that have been known
for decades (or even centuries) and that remain outside the classical framework. The childless
theory and the orphan empirical laws might yet form a family.

Nonlinear probability is a broad term, really a matter of definition by negatives. It is not the
familiar linear probability that is taught and used in every university. Nonlinear probability
distributions will not satisfy the usual criteria applied in probability work, such as conformity
to the central limit theorem; nor will it exhibit the usual properties of linear systems.
Nonlinear distributions are diverse, each case potentially sui generis.

In nature, though, we find one outstandingly common pattern, across a broad range of
fields including species abundance, cellular metabolism, economics, epidemiology, Web
traffic, military history, voting, participation in religion, and much more. The common
pattern in this field is logarithmic decline in rare events with increasing set size, in the
manner of the plot from Rhine (1940). The form of the decline when plotted on log-log
axes is a straight line.

For example, take Smeed’s Law. This is a pattern governing traffic accident fatalities, first
observed in 1949. Smeed observed that traffic fatalities per capita in different countries
decrease in a very orderly way as the absolute number of drivers increases. The relation is
a power law of the form p(fatality/year) = kNa, where N is the number of drivers, a is
roughly 0.7, and k is a constant.

The literature on Smeed’s Law, not very abundant, offers no convincing explanation for
this relationship. It is an ‘orphan’ law, an ad hoc observation that awaits integration into
the broad system of scientific knowledge.

Another more recent example is the anomalous decline in participation by members of
online communities. For example, take video sharing websites like YouTube. Most such
sites keep track of how many viewers have seen a particular item. They also allow viewers
to submit a comment, or to press a button saying they like or dislike it. The near-universal
pattern on such sites is for the rate of commenting to decline relative to the rate of viewing.
As audiences grow from 10 viewers to 10,000 to 10 million, the rate of commenting plunges,
typically from 10 percent to 1 percent to 0.1 percent or less. These dramatic swings in
interest are made even more mysterious because they are so orderly.

The example below is from the Vimeo video sharing website in 2007. The video is known
as the ‘Flagpole Sitta Lip Dub’ and featured an office full of people singing along with a
pop song. It earned more than 400,000 views in its first six weeks. The participation rate as
a percentage of cumulative viewers to date dropped in very orderly fashion. Two rates are
shown, for people who wrote a comment, and those who pressed the ‘I like’ button.
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The comments and ‘I like’ responses grow steadily rarer over the six-week debut of the
video, falling so rapidly that the rate is noticeably different in the morning and the afternoon
on any given day. This law of mass participation is of tremendous interest and practical
relevance.

Another highly interesting application is in epidemiology. One longstanding problem in
that field is how to know, at the start of an epidemic, what the mortality rate is likely to be
over its course. The standard approach is to assume a stationary mean, or at most a series of
stationary means for different risk groups. That is, for adults 18-45 there will be an average
mortality rate that is observable at the beginning, middle, and end. The mortality rate may
vary for children or the elderly when considered separately, but these too will be stationary
averages. Likewise for the transmission risk, or reproduction number R commonly used by
epidemiologists.

The historical record does not bear out these assumptions. For many diseases there is
evidence of mortality falling between the start and end of an epidemic, as well as evidence
of declining transmission rates. The cases go back centuries.

The standard epidemiological model is not of much help in such situations. A nonlinear
probability scheme can perhaps do better. The global H1N1 pandemic in 2009 offered a
chance to validate a log-log probability model.
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In May 2009, the first reports emerged from Mexico of an outbreak of the H1N1 virus that
had frighteningly high mortality rates. The medical personnel attending the first few dozen
cases were coming down with the disease, and Internet rumors claimed one or more had
already died.

The Mexican government and the World Health Organization issued initial statements about
the outbreak that were only a little less alarming than the rumors. But week by week, the
picture became more optimistic.

Table 1: Selected falling mortality estimates for H1N1 pandemic, 2009

Mortality Case count Date Issuing authority
9.6 % 73 30 Apr 2009 WHO lab confirmations Mexico
5.3 % 3,000 30 Apr 2009 Mexican government
1.7 % 4,900 31 May 2009 WHO lab confirmations Mexico
0.8 % 17,400 31 May 2009 WHO lab confirmations global
1.4 % 8,300 30 Jun 2009 WHO lab confirmations Mexico
0.7 % 52,000 30 Jun 2009 WHO lab confirmations global

0.15 % 30 million 15 Aug 2009 U.S. Presidential Panel
0.9 % Unknown Sep 2009 Media reports
0.5 % Unknown Oct 2009 Malaysia

0.02 % 22 million Nov 2009 Centers for Disease Control

The spread of the epidemic also failed to live up to the first official forecasts.
The original expectation was that H1N1 would spread until a billion people, or perhaps
several billion, had caught it. This followed from the standard epidemiological assumption
of constant, stationary transmission rates. The only force that is recognized as restraining
spread of an epidemic (once it has escaped quarantine) is acquired immunity.

Here, just as in the Vimeo video example, the behavior of the virus was noticeably different
from day to day. The points on the graph cover the period from April 27 through July 6.
After that date, the WHO ceased to provide country-by-country coverage of specific cases
and shifted to regional estimates. Even for the period covered by WHO bulletins, we can
be sure that the data increasingly understate the real transmission rate as more and more
cases were going unrecorded. However, the trend is obviously not stationary. The final size
of the epidemic (in early 2010) is unknown, but most likely between 100 and 200 million
cases.
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H1N1 daily transmission rates, 2009
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Precisely why these declines occur, that is, the medical mechanisms involved, is beyond
the scope of this paper, but a promising lead is a measurable reduction in the ‘viral load’
of later patients. The average number of viral particles per millilitre of blood is smaller
for successive cohorts. This reduces the severity of symptoms (lower mortality) as well
as  the efficiency of transmission.

There are similar trends to be found in criminology, voter turnout, adoption of new
products, religious participation, and dozens of other fields. Thus reviving Spencer-
Brown’s 1957 project in 2010, and developing a general methodology of nonlinear
probability, is far from being an idle or purely mathematical diversion. If we can
understand this decline process better, there are enormous practical benefits waiting.

2. The Bayesian, Maximum-Entropy Framework of Jaynes

Coincidentally, in the same year that Spencer-Brown was suggesting that classical
probability lacked a proper foundation and had unsolved empirical problems lying on all
sides, the physicist Edwin Jaynes put forward a new framework in which a solution
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could be found, the ‘principle of maximum entropy’. Here is how the principle is
described byWikipedia:

Let some testable information about a probability distribution function be given.
Consider the set of all trial probability distributions that encode this information. Then,
the probability distribution that maximizes the information entropy is the true
probability distribution with respect to the testable information prescribed.

This is essentially a Bayesian approach to empirical problems in nonlinear probability. In
his initial 1957 paper, Jaynes first proposed that lacking a detailed model, or when faced
with multiple possible dimensions of measurement for a complex system, one could use as
a ‘prior’ for a given system whatever distribution maximizes uncertainty about the outcome.

For a simple, classically linear case like an unbiased six-sided die, Jaynes noted that the
long-run maximum entropy distribution is the same as the classical distribution. Our
uncertainty about the outcome is maximized by setting the likelihoods for the six sides
equal to one another. There is thus no conflict between the two frameworks. At least,
Jaynes believed there was none, in the long run. As it turns out, experimentally there is a
difference. But this is good news for Jaynes and not so good news for the classical approach,
as Jaynes’ approach is adaptable to the observed facts of decline.

Moreover, for any more complex nonlinear case, lacking a detailed account of the
mechanism or a classically linear model, we are often at a loss how to proceed. We do
not have even a plausible approximation. This is where Jaynes’ method offers support
and insight.

One aspect of Jaynes’ work that is vital for our purposes is that there is no preferred
perspective, no single way of looking at the data that qualifies as being causative in a
way that other perspectives are not. Thus we would not focus necessarily on the ‘atomic’
sequence of individual throws of a die. It would be just as appropriate to characterize the
system in terms of two-throw groups, or four-throw groups, or some other ‘molecular’
configuration. The theory is not a theory of what is physically happening, so much as a
theory of what observations we can hope to make of the system. One method of making
observations is in principle much like another.

This perspective helps to overcome the difficulties raised by Spencer-Brown in 1957,
about experimenters throwing out significant patterns of behavior by their ‘chance
machines’.
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4. Basic Procedure for Testing for Decline in ‘Chance Machines’

To properly assess whether a given ‘chance machine’ exhibits decline requires
some novel test procedures and a different perspective on what data are to be kept
or thrown out. Here are some key points:

1. Careful study must be made of the apparatus and its possibilities for
compound or ‘molecular’ events. These exist along two dimensions. A
single die thrown multiple times yields sequential compounds like ‘11’ and
‘34’. Two dice thrown together yield simultaneous compounds as well as
sequential ones. Dice or coins or cards should always be distinguishable,
so that for example if a red die and a blue die are thrown together, the
sequential compounds for the red die can be identified as distinct from
those for the blue die.

Some experiments will have to be done with a person in the loop. For
example, a slot machine in which the precise moment that the lever is
pulled influences the random number selection process. In such cases we
must consider each subject-machine combination to be a distinct
apparatus. Decline will occur for each combination. If multiple
experimenters play the same machine, their results must be distinguished
in the analysis.

The apparatus should also be studied for its axes of internal symmetry.
These turn out to be quite numerous and relevant. For example, an
American roulette wheel has 38 spaces. Because of symmetry, we can also
think of the wheel as evenly divided into 19 ‘double’ spaces, taking two
adjacent spaces as one. European roulette wheels only have 37 spaces and
so lack this internal symmetry. When determining the odds of compound
events and their relative rarity, this kind of internal symmetry can have a
large impact, particularly because of rule #2 below.

2. The rarer the item in nominal, classical terms, the greater the surplus will
generally be at the start, and the longer the series must be before
occurrences of the item slip below the classical expectation. The length of
the sequence needed to exhaust the surplus is roughly proportional to the
odds of the event. Thus if the apparatus is a pair of brand-new dice, and
the test is for occurrences of ‘doubles,’ then the surplus of doubles will
usually be exhausted after several hundred throws. If the apparatus is three
dice, and the test is for occurrence of ‘triples,’ the surplus will take longer
to exhaust, perhaps thousands of throws instead of hundreds.

3. Every trial, especially early trials, must be recorded. The more usual
practice with a newly constructed or acquired random number generator is
to ‘run it in,’ and not to start sampling data until many hundreds or
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thousands of results have been generated. This will undermine the purpose
of the experiment, as it will not only limit the study to data from the later,
much slower period of decline, when rare items have already become
much rarer, but itwill also render moot the full size of the set of results.

Failure to do this will not make the tests useless, merely limited. For
example, in one early test, some exploratory experiments were done with a
12-sided die but not fully recorded. Then a long series of 1,500 throws was
made looking for repeats. As expected, the series of 1,500 throws under-
repeated. The rare event of a repeat had already declined below the
classical level, so that only 97 repeats (p < 0.005) were obtained. It would
clearly have been better, however, if the result in this case could have been
compared with the early part of the run in which repeats were more
plentiful.

4. Trends should be evaluated cumulatively. Because our hypothesis is that
the system is accumulating entropy, the variable of greatest interest is the
rate of rare occurrences over the full set of results. As they become rarer,
these events effectively increase the overall entropy of the system.

This rule of evaluation in cumulative context contrasts strongly with the
state of the art in random number generation at present. The suite of
DIEHARD tests endorsed by the National Institute for Standards and
Testing (NIST) works on arbitrarily sampled blocks of data, typically
1,000 bits in length, to determine if there are, for example, too many long
strings of 111111 or 000000.Unfortunately, a proper test can only be done
contextually, not in relation to the string’s immediate neighborhood but in
relation to the whole output history of the RNG to date. Thus standard
testing regimes are not suited to finding the phenomenon under study here.

This is important because declines do show up in purely digital random-
number generation schemes. In one case, several years of output from a
brand-new Keno game based on a digital RNG was found to exhibit
significant long-run bias—not of a kind that players could exploit to win
the game, but of a kind that conformed to the decline hypothesis and that
ought to raise doubts about the stability of the algorithm. If a test
procedure never considers long-run trends of this kind, then long-run
stability issues can scarcely be discussed.

It is important as well because simulations of physical games often exhibit
the same kind of decline as the physical game itself. A deck of 25 cards
with five symbols, when shuffled, should yield an average of four ‘repeats’
per shuffle, in which successive cards have the same symbol. Digitally
simulated decks using a spreadsheet show a small but significant decline,
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as do actual decks. Here is the cumulative plot of decline in a simulated
deck shuffled 3,000 times:
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The net shortage after 3,000 shuffles was 213 missed repeats, or 1.8
percent. This was hardly something that would be noticed casually, but it
was significant.

5. Apart from graphing the data cumulatively, another handy standard format
for comparison is by quartiles. This was common practice in ESP studies
in the early 20th century and it remains very useful today. Whether the data
consist of a few hundred dice throws, or a few hundred thousand ‘I like’
responses from viewers of a video, a comparison of quartiles should yield
a common pattern. The difference between the first and fourth quartiles
will generally be the largest. The exact difference will depend on the
particular apparatus and the rare items being tracked.
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5. Summary of Recent Testing

The purpose of testing conducted between 2003 and 2009 was to extend the range of
different ‘chance machines’ considered, beyond the fairly limited number that
Spencer-Brown tried. Virtually all of these have generated significant (p < 0.05)
declines of the expected kind. In every category there has been third-party data
generated prior to the experiment, sometimes in great quantity, that also showed the
same type of decline.

— 4-sided, 6-sided, 8-sided, 10-sided, 12-sided, and 20-sided dice
— decks of cards (52-card, 25-card Zener, multi-deck Baccarat, custom decks)
— simulated decks of cards (all the same types above)
— coins (spun on a table or flipped in the air, singly or in groups)
— digital Keno games (online and in casinos)
— roulette wheels (in casinos and using smaller replicas)
— slot machines (casino, online, PC software simulator)

The significance of the results will vary. Occasionally the difference will only
yield p < 0.10, or even p < 0.20. Differences of p < 0.05 to p < 0.01 are quite
common. Extremely large differences of p < 0.00001 or smaller have occurred
numerous times.

Typically the decline is not large enough to overcome the house edge in any game
of chance. Sometimes the decline is striking but not really relevant to the game.
For example, a 2 percent shortage of pairs in an eight-deck blackjack shoe will not
give either the house or the player any sort of meaningful advantage, despite the
overall house edge being smaller than 2 percent.

In preparing this paper I am conscious of the extreme skepticism that is likely to
be brought to bear by readers on any challenge to classical probability.

It should be kept firmly in mind that the strength of the argument for decline does
not lie in any one test having high significance, but rather in the difficulty of
finding ‘chance machines’ that  do not exhibit decline. A dozen experiments using
different apparatus, half of them based on data collected by third parties, each
with an expectation of zero long-run bias, each with decline of significance p <
0.1, constitute a more compelling argument than a single wildly improbable result.
A hundred such experiments are, for me at least, enormously provocative.

Also, as I have tried to show, ultimately the motive for investigation is not simply
to revisit half-century-old concerns about the classical model being wrong, but to
acknowledge the present challenges that we face in interpreting and plotting a
wealth of highly relevant phenomena, like Web traffic and the spread of H1N1
virus.
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These experiments, if done correctly, can only end by strengthening our
understanding of probability. I hope that readers will be encouraged to pursue the
topic on their own. Ultimately, science needs to understand this, wherever it might
lead, and whatever ‘sacred cows’ it might gore along the way.
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