JSM 2010, Session #119

The Undetectable Difference: An Experimental Look at the "Problem" of p-Values

by

William M. Goodman, Ph.D. *University of Ontario Institute of Technology*

The Problematic Inequality

P([The sample data have the obtained distribution] | [H₀ is true])

 $P([H_0 \text{ is true}] \mid [The sample data have the obtained distribution])$

The Problematic Inequality

P([The sample data have the obtained distribution] | [H₀ is true])

Issue 1: "Thickness" of H₀?

 $P([H_0 \text{ is true}] \mid [The sample data have the obtained distribution])$

The Problematic Inequality

P([The sample data have the obtained distribution] | [H₀ is true])

Issue 1: "Thickness" of H₀?

Issue 2: Mismatched structures?

 $P([H_0 \text{ is true}] \mid [The sample data have the obtained distribution])$

Provisional Findings

1) There <u>is</u> a monotonic relationship between the order of magnitude of the p-value and the relative probability that H₀ is true.

Provisional Findings

- 1) There <u>is</u> a monotonic relationship between the order of magnitude of the p-value and the relative probability that H_0 is true.
- 2) If using a p-value algorithm to decide whether or not to reject H₀, then (all else being equal):
 - a) For thick H_0 's: (effective α) > (nominal α)
 - b) For thin H_0 's: (effective α) < (nominal α)

Provisional Findings

- There <u>is</u> a monotonic relationship between the order of magnitude of the p-value and the relative probability that H₀ is true.
- 2) If using a p-value algorithm to decide whether or not to reject H_O, then (all else being equal):
 - a) For thick H_0 's: (effective α) > (nominal α)
 - b) For thin H_0 's: (effective α) < (nominal α)
- 3) Tentatively, these effects seem independent of (a) the size of σ and (b) the method used to obtain the p-values

A Few References

- Introduction/history of the problem:
 - Ziliak, S.T. and McCloskey, D.N. (2009) The Cult of Statistical Significance. *Proceedings, JSM 2009*
 - Goodman, S.N. (1993) p Values, Hypothesis Tests, and Likelihood: Implications for Epidemiology of a Neglected Historical Debate. American Journal of Epidemiology. 137(5), 485-496.
- A Bayesian perspective...and re "thickness"
 Berger, J.O. and Delampady, M. (1987) Testing Precise Hypotheses. Statistical Science. 2(3), 317-352.
- "Specified Allowable Error" or "Regions of Indifference" and Tests of Equivalence or Clinical Non-Inferiority
 - Robinson, A.P. and Froese, R.E. (2004) Model Validation Using Equivalence Tests. *Ecological Modeling*. 176, 349-358.

Provisional Findings

- 1) Monotonic relationship between ... p-value and the relative probability that H₀ is true.
- 2) a) For thick H_0 's: (effective α) > (nominal α)
 - b) For thin H_0 's: (effective α) < (nominal α)
- 3) These effects seem independent of (a) size of σ and (b) the method to obtain p-values
- 4) p-Values cannot tell you the "probability that (on this occasion) H₀ is true (or false)"

An Additional Challenge?

P([The sample data have the obtained distribution] | [H₀ is true])

Is this really the p-value?

 $P([H_0 \text{ is true}] \mid [The sample data have the obtained distribution])$

An Additional Challenge?

P([the sample statistic meets {criterion T}]
[(H₀ is true) and ({Criterion T} has been predetermined procedurally from a sample)]

Recommendations

- 1) Don't give up on *p*-values, but keep clear on what they do—and do not—tell us, and under what conditions.
- 2) At the very least, provide (or look for) this supplementary information:
 - a) Actual effect size, and
 - b) The "thickness" of H₀, i.e. the minimum difference that's detectable and/or cared about.

