An Across-The-Curriculum Approach to Quantitative Literacy in Environmental Studies

Ben Steele, Semra Kilic-Bahi, Nick Baer, Leon Malan, Laura Alexander, Harvey Pine
Colby-Sawyer College
New London, NH
Quantitative Reasoning and the Environment

Need for Quantitative Skills

- Understanding issues
- Careers
- Informed Citizenry
- Environmental Studies and Environmental Science

Across the curriculum Approach

- Encounter different skills and different applications throughout the curriculum
- Use skills in context
 - learning advantage
 - Habit of mind
 - But hard to ensure students get all skills
 - Harder to assess

Skills

- Basic arithmetic
 - proportion; percent
 - Unit conversions
 - Rate of change
- Data presentation and analysis
 - error
 - graphing
 - Descriptive statistics

Skills (cont.)

- Algebra; Modeling
 - Manipulating equations
 - Linear and non-linear functions
 - Modeling
- Geometry; Trigonometry
 - Circles
 - Squares, rectangles, Triangles
 - Trigonometric functions
 - Spheres
 - Cubes and other solid figures

Curriculum Grid Env. Science

Aquatic

- Basic arithmetic
- Data presentation and analysis
- Algebra
- Modeling
Examples: BIO 107 Ecology
- Data collection and presentation
- Preference of Fall Web Worms for maple versus cherry leaves
- Spreadsheets, means, standard errors, graphs

Examples: ENV 201 Water Resources
- Quantifying Stream Discharge
 - Area calculations
 - Unit conversions
 - Data management
 - Spreadsheet skills
 - Graphing

Examples BIO 318 Terrestrial Ecology
- Matrix model using survival and reproduction in several age classes.
- Stable population and age classes
- Effect of survival at different ages

Does it work: Evaluation
- Overall: Basic Q skills and QL skills tests

Curriculum Grid Env. Science Terrestrial

- Basic arithmetic
- Data presentation
- Algebra
- Number sense and analysis
- Modeling

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic arithmetic</td>
<td></td>
</tr>
<tr>
<td>Data presentation</td>
<td></td>
</tr>
<tr>
<td>Algebra</td>
<td></td>
</tr>
<tr>
<td>Number sense and analysis</td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td></td>
</tr>
</tbody>
</table>

Curriculum Grid Env. Studies

- Basic arithmetic
- Data presentation
- Algebra
- Number sense and analysis
- Modeling

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic arithmetic</td>
<td></td>
</tr>
<tr>
<td>Data presentation</td>
<td></td>
</tr>
<tr>
<td>Algebra</td>
<td></td>
</tr>
<tr>
<td>Number sense and analysis</td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td></td>
</tr>
</tbody>
</table>
Does it work: Evaluation

- Pre/post test on module

Challenges

- Only one example of a skill: low retention
- Hindered by basic skills

Task 1. If the island is 267 ha and each bird needs 0.1 ha, what is the maximum population? (A hectare is 100m by 100m)

Challenges: basic skills (cont.)

- Now design an experiment to answer the question:
 - Is it better for a one year old to produce more young or to put their energy into survival? Start by reducing the survival of one year olds by 10% and see what % change in fecundity is required to recreate a stable population.

Extra credit:
- What is 10% less than 0.7?
- What is 20% less than 200
- What is 5% more than .01

- Average = 1.7, Range 0-3
- Lack of practice?

Conclusions

- Quantitative Literacy skills are weak
- Across the curriculum makes sense
 - But does it work?

- Projection
 - Students need to encounter quantitative issues more often.

- bsteele@colby-sawyer.edu