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    PROLOGUE (to the web version) 
This book was originally published by Sage in 1996.  In 2003 I found out 
that they no longer wanted to support it, so they gave the copyright 
back to me.  I am pleased to be able to put the book up on my website, 
with free access to all.  I have made a few changes here and there, but 
the content remains essentially the same.  I hope you'll enjoy reading 
it, downloading it, printing it, or whatever. 
 

PREFACE (to the original version, slightly modified) 
I believe that all of the important concepts in statistics 
can be learned by using an ordinary deck of playing cards.  This 
little book is an outgrowth of that belief.   
 
It is intended to serve as a principal textbook or a 
supplementary reference for three different audiences: (1) those 
who have already taken a statistics course and either have failed 
or have gotten so little out of the course that they want to 
start all over again; (2) those who have already taken a 
statistics course and have done quite well but want to sharpen 
their understanding of the basic concepts; and (3) those who are 
studying statistics for the first time and are attracted by the 
idea of using playing cards for something other than games. 
      
The nine chapters cover many of the topics that are included 
in a one-quarter or one-semester college course at the 
introductory, "non-calculus" level.  There are no algebraic 
formulas whatsoever (the general approach is very verbal--I want 
my readers to be able to speak the language of statistics).  A 
modest competency in the four basic arithmetic operations 
(addition, subtraction, multiplication, and division) and square- 
root extraction is sufficient mathematical preparation. 
 
A word about calculators and computers: Although I would 
prefer that you work through most or all of the exercises  
"by hand", if you find that to be either boring or unduly  
difficult I have no objection to your using some sort of 
computational assistance (machines, not friends). 
 
Why should people learn statistics?  First of all, the 
popular press and other media are full of statistics 
(particularly percentages and differences between percentages, 
which are the primary focus of this book), and an understanding 
of basic statistical concepts helps immeasurably in trying to 
sort out what to take seriously and what to regard with a grain 
of salt.  Second, it is almost impossible to read the scientific 
research literature, much less carry out such research, without a 
knowledge of statistics.  Finally, like mathematics (its parent 
discipline), statistics is based upon sound logical principles.  
When properly used, statistical analysis actually makes sense. 
 
Why use a deck of cards?  The principal reason is that a 
deck of cards constitutes an actual finite population from which 
samples can be randomly drawn, both with replacement and without 
replacement.  If coins, for example, were to be emphasized, the 
population would be obscure, hypothetical, and infinite (all 
possible tosses of a fair coin), and sampling would necessarily 
be with replacement only. 
 
So get out your deck of cards and begin.  I think you might even like 
it. 
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CHAPTER 1: POPULATIONS, VARIABLES, AND DISTRIBUTIONS 

Introduction 
Do you have your deck of cards?  Spread the cards out on a 
table or on the floor and take a look at them.  As you probably 
already knew: 
     1.  There are 52 of them. 
     2.  The cards are of two different colors: black and 
     red; four different suits: clubs, diamonds, hearts, and 
     spades--the first and last are black, and the middle 
     two are red; thirteen different denominations: ace 
     (one), two, three, four, five, six, seven, eight, nine, 
     ten, jack (eleven), queen (twelve), and king 
     (thirteen); and two different types of "pictureness": 
     face cards (the jacks, queens, and kings) and non-face 
     cards (all others). 
 
Table 1.1 contains a list of the names of all of the 52 cards.  
Any entire collection of objects is called a population. 
                  _____________________________ 
                    Insert Table 1.1 About Here 
                  _____________________________ 
 
[All tables are provided at the ends of the chapters in which they are 
first cited.] 
 
The characteristics of the playing cards (color, suit, 
denomination and "pictureness") are called variables since the 
cards are not all of the same color, suit, denomination, or 
"pictureness".  The values for the variables are called 
observations or measurements.  The measurements on each of the 
four variables for each of the 52 cards are contained in Table 
1.2.  This rectangular array of numbers, where each row 
(horizontal) represents an object and each column (vertical) 
represents a variable, is called a data matrix.  In statistics we 
usually have many more objects than we have variables, so most 
data matrices (the plural of matrix is matrices) are "long and 
skinny" rather than "short and fat".  
                  _____________________________ 
                    Insert Table 1.2 About Here 
                  _____________________________ 
 
As indicated above, there are just two categories for the 
color variable (black and red) and for the "pictureness" variable 
(face and non-face).  Any variable that has just two categories 
is called a dichotomy.  For such variables it is often convenient 
to use numbers to identify the categories even though the numbers 
may have no necessary relevance to the categories.  The numbers 
most often chosen for this purpose are the numbers 1 and 0, in 
which case the dichotomy is called a "dummy" variable.  For the 
color variable we have arbitrarily called all of the black cards 
1's and all of the red ("non-black") cards 0's; for the 
"pictureness" variable we have called all of the face cards 1's 
and all of the non-face cards 0's.  This book will pay special 
attention to dichotomies and to the statistical procedures that 
are appropriate for dealing with them. 
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For the suit variable we have used the numbers 1,2,3, and 4 
to identify the clubs, diamonds, hearts, and spades 
(respectively), since they are the rank orders (from lowest to 
highest) of the four suits in the game of bridge. 
 
The best way to get a feel for the concept of a variable is 
to carefully scrutinize two of the cards that are about as 
different as they could possibly be.  Let us therefore make a 
"case study" of the queen of diamonds (card #25 in the 
population) and the six of spades (card #45).  The color of the 
queen of diamonds is red (0), its suit is diamonds (2), its 
denomination is twelve (12), and it is a face card (1).  The six 
of spades is black (1) rather than red, it is a spade (4) and not 
a diamond, it has a denomination of six (6), and it is not a face 
card (0).   

Frequency distributions 
The first thing you should do whenever you have the data for 
a particular variable for a population is to make a frequency 
distribution of those data.  (I say "those data" because data is 
a plural noun--the singular is datum.)  A frequency distribution 
is nothing more than a count of the number of times each value of 
the variable occurs.  I'm sure you've made lots of frequency 
distributions in your lifetime, but you probably didn't call them 
by that name.  What did you do?  You wrote down all of the 
possible values in a column, put a tally mark in the appropriate 
place as you checked each value off a list, and then counted the 
tallies.  If you were to do that for each of the four playing 
card variables you would get the frequency distributions 
displayed in Table 1.3.   
                    ___________________________ 
                    Insert Table 1.3 About Here 
                    ___________________________ 
 
The "tally" sections of the frequency distributions in Table 
1.3 provide graphical representations of those distributions.  If 
you rotate those sections 90 degrees counter-clockwise, the tallies 
will form what is called a histogram, with the values of the 
variable along the horizontal (X) axis and the frequencies along 
the vertical (Y) axis.  
     
In addition to the "raw" frequencies, Table 1.3 also 
contains the relative frequencies and corresponding percentages.  
For the "pictureness" variable, for example, the frequency for 
face card is 12, the relative frequency is 12 "out of" 52 or 
.231, which converts to 23.1% (by moving the decimal point two 
places to the right and affixing a % sign). 
 
Three of the distributions (color, suit, and denomination) 
are symmetric since they are perfectly balanced, but the fourth 
distribution ("pictureness") is asymmetric or skewed.  It is 
often interesting to summarize certain features of frequency 
distributions.  Those features (central tendency, variability, 
skewness, and kurtosis) will be pursued in Chapter 2. 

Our 52 "States" 
Although playing cards constitute an ideal population for 
learning basic statistical concepts, we need more interesting 
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populations for applying these concepts.  I have therefore 
created another population of the same size but composed of 
different objects.  This population is a collection of our 52 
states or pseudo-states (the District of Columbia and Puerto 
Rico have been added).  The names of the "states" are listed in 
Table 1.4.  Delaware is like the ace of clubs, Pennsylvania is 
like the two of clubs, ..., Puerto Rico is like the king of 
spades.  The "states" are listed in their order of admission to the 
union.  [The District of Columbia and Puerto Rico are listed last, since 
they are technically not states and have not (yet) been admitted to the 
union.] 
                   ___________________________ 
                   Insert Table 1.4 About Here 
                   ___________________________ 
 
Near the end of each of the first eight chapters there will be 
a series of five exercises based on this alternative 
population.  Here's the first set.  (The answers to most of the 
exercises are provided at the back of the book, but be sure you 
work on the exercises before peeking at the answers!) 

Exercises 
1.  Which of the 52 "states" has the most letters in its name?  
Which has the fewest?  Make a frequency distribution for the 
variable "Number of Letters in Name".  Is it symmetric or skewed?  
Why? 
 
2.   a.  The Information Please website lists the names of the members 
of the House of Representatives for each "state" (the District of 
Columbia and Puerto Rico have none, but zero is a perfectly respectable 
measurement).  The number of members from each "state" are provided in 
Table 1.5.  Make a frequency distribution for that variable. Comment on 
any interesting features this distribution may have. 
      

b.  That same source provides the political affiliation (R 
for Republican and D for Democrat) of each of the members of the 
House of Representatives from the state of California--see Table 
1.6.  [There are 53 of them, one for each card in the deck plus a joker.  
Which one of them is the joker?] How many of those members are 
Republicans?   
          _________________________________________ 
        Insert Table 1.5 and Table 1.6 About Here 
        _________________________________________ 
 
3.  As many of you know, the primary purpose of the decennial 
(every ten years) census is to apportion the House of 
Representatives.  The frequency distribution for the variable 
"number of members in the House of Representatives" is therefore 
dynamic rather than static, even though the total frequency stays 
the same (435).  What do you think the distribution will look 
like in the year 2020?  Why? 
 
4.  Make a frequency distribution for the variable "Political 
Affiliation" for the 53 Californians.  How does it differ from the 
distribution you created in Exercise 2a? 
 
5.  Can you think of a variable for the "states" data that would be 
distributed just like the "Suit" variable for a deck of cards?  If so, 
what is that variable?   
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Table 1.1:  The Objects in the Population of Cards 
 
 1.  The ace of clubs 
 2.  The two of clubs 
 3.  The three of clubs 
 4.  The four of clubs 
 5.  The five of clubs 
 6.  The six of clubs 
 7.  The seven of clubs 
 8.  The eight of clubs 
 9.  The nine of clubs 
10.  The ten of clubs 
11.  The jack of clubs 
12.  The queen of clubs 
13.  The king of clubs 
14.  The ace of diamonds 
15.  The two of diamonds 
16.  The three of diamonds 
17.  The four of diamonds 
18.  The five of diamonds 
19.  The six of diamonds 
20.  The seven of diamonds 
21.  The eight of diamonds 
22.  The nine of diamonds 
23.  The ten of diamonds 
24.  The jack of diamonds 
25.  The queen of diamonds 
26.  The king of diamonds 
27.  The ace of hearts  
28.  The two of hearts 
29.  The three of hearts 
30.  The four of hearts 
31.  The five of hearts 
32.  The six of hearts 
33.  The seven of hearts 
34.  The eight of hearts 
35.  The nine of hearts 
36.  The ten of hearts 
37.  The jack of hearts 
38.  The queen of hearts 
39.  The king of hearts 
40.  The ace of spades 
41.  The two of spades 
42.  The three of spades 
43.  The four of spades 
44.  The five of spades 
45.  The six of spades 
46.  The seven of spades 
47.  The eight of spades 
48.  The nine of spades 
49.  The ten of spades 
50.  The jack of spades 
51.  The queen of spades 
52.  The king of spades 
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Table 1.2:  The Data Matrix for the Population of Cards 
 
Object    Color     Suit     Denomination     "Pictureness" 
 1          1         1            1                0 
 2          1         1            2                0 
 3          1         1            3                0 
 4          1         1            4                0 
 5          1         1            5                0 
 6          1         1            6                0 
 7          1         1            7                0 
 8          1         1            8                0 
 9          1         1            9                0 
10          1         1           10                0 
11          1         1           11                1 
12          1         1           12                1 
13          1         1           13                1 
14          0         2            1                0 
15          0         2            2                0 
16          0         2            3                0 
17          0         2            4                0 
18          0         2            5                0 
19          0         2            6                0 
20          0         2            7                0 
21          0         2            8                0 
22          0         2            9                0 
23          0         2           10                0 
24          0         2           11                1 
25          0         2           12                1 
26          0         2           13                1 
27          0         3            1                0 
28          0         3            2                0 
29          0         3            3                0 
30          0         3            4                0 
31          0         3            5                0 
32          0         3            6                0 
33          0         3            7                0 
34          0         3            8                0 
35          0         3            9                0 
36          0         3           10                0 
37          0         3           11                1 
38          0         3           12                1 
39          0         3           13                1 
40          1         4            1                0 
41          1         4            2                0 
42          1         4            3                0 
43          1         4            4                0 
44          1         4            5                0 
45          1         4            6                0 
46          1         4            7                0 
47          1         4            8                0 
48          1         4            9                0 
49          1         4           10                0 
50          1         4           11                1 
51          1         4           12                1 
52          1         4           13                1   
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Table 1.3:  The Frequency Distributions of the Four Variables for 
            the Population of Cards 
 
Variable = Color 
                                                       Relative 
Value  Tally                                 Frequency Frequency 
 0     11111111111111111111111111                26   .500(50%) 
 1     11111111111111111111111111                26   .500(50%) 
                                                 __ 
                                                 52 
 
Variable = Suit 
                                                       Relative 
Value  Tally                                 Frequency Frequency 
 1     1111111111111                             13   .250(25%) 
 2     1111111111111                             13   .250(25%) 
 3     1111111111111                             13   .250(25%) 
 4     1111111111111                             13   .250(25%) 
                                                 __ 
                                                 52 
 
Variable = Denomination 
                                                       Relative 
Value  Tally                                 Frequency Frequency 
 1     1111                                       4   .077(7.7%) 
 2     1111                                       4   .077(7.7%) 
 3     1111                                       4   .077(7.7%) 
 4     1111                                       4   .077(7.7%) 
 5     1111                                       4   .077(7.7%) 
 6     1111                                       4   .077(7.7%) 
 7     1111                                       4   .077(7.7%) 
 8     1111                                       4   .077(7.7%) 
 9     1111                                       4   .077(7.7%) 
10     1111                                       4   .077(7.7%) 
11     1111                                       4   .077(7.7%) 
12     1111                                       4   .077(7.7%) 
13     1111                                       4   .077(7.7%) 
                                                 __ 
                                                 52 
 
Variable = "Pictureness" 
                                                       Relative 
Value  Tally                                 Frequency Frequency  
 0     1111111111111111111111111111111111111111  40   .769(76.9%) 
 1     111111111111                              12   .231(23.1%) 
                                                 __ 
                                                 52 
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Table 1.4:  The Objects in the Population of "States" 
 
 1.  Delaware 
 2.  Pennsylvania 
 3.  New Jersey 
 4.  Georgia 
 5.  Connecticut 
 6.  Massachusetts 
 7.  Maryland 
 8.  South Carolina 
 9.  New Hampshire 
10.  Virginia 
11.  New York 
12.  North Carolina 
13.  Rhode Island 
14.  Vermont 
15.  Kentucky 
16.  Tennessee 
17.  Ohio 
18.  Louisiana 
19.  Indiana 
20.  Mississippi 
21.  Illinois 
22.  Alabama 
23.  Maine 
24.  Missouri 
25.  Arkansas 
26.  Michigan 
27.  Florida 
28.  Texas 
29.  Iowa 
30.  Wisconsin 
31.  California 
32.  Minnesota 
33.  Oregon 
34.  Kansas 
35.  West Virginia 
36.  Nevada 
37.  Nebraska 
38.  Colorado 
39.  North Dakota 
40.  South Dakota 
41.  Montana 
42.  Washington 
43.  Idaho 
44.  Wyoming 
45.  Utah 
46.  Oklahoma 
47.  New Mexico 
48.  Arizona 
49.  Alaska 
50.  Hawaii 
51.  District of Columbia 
52.  Puerto Rico 



 Page 11 

Table 1.5: Number of Members of the U. S. House of Representatives 
           from Each "State" (as of March 15, 2004) 
  
 1.  Delaware             1 
 2.  Pennsylvania        19   
 3.  New Jersey          13 
 4.  Georgia             13 
 5.  Connecticut          5 
 6.  Massachusetts       10 
 7.  Maryland             8 
 8.  South Carolina       6 
 9.  New Hampshire        2 
10.  Virginia            11 
11.  New York            29 
12.  North Carolina      13 
13.  Rhode Island         2 
14.  Vermont    1 
15.  Kentucky    6 
16.  Tennessee    9 
17.  Ohio    18 
18.  Louisiana    7 
19.  Indiana    9 
20.  Mississippi    4 
21.  Illinois   19 
22.  Alabama    7 
23.  Maine     2 
24.  Missouri    9 
25.  Arkansas    4 
26.  Michigan   15 
27.  Florida   25 
28.  Texas    32 
29.  Iowa     5 
30.  Wisconsin    8 
31.  California   53 
32.  Minnesota    8 
33.  Oregon     5 
34.  Kansas     4 
35.  West Virginia   3 
36.  Nevada     3 
37.  Nebraska    3 
38.  Colorado    7 
39.  North Dakota    1 
40.  South Dakota    1 
41.  Montana    1 
42.  Washington    9 
43.  Idaho     2 
44.  Wyoming    1 
45.  Utah     3 
46.  Oklahoma    5 
47.  New Mexico    3 
48.  Arizona       8 
49.  Alaska     1 
50.  Hawaii     2 
51.  District of Columbia 0 
52.  Puerto Rico          0 
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Table 1.6. Members of the U.S. House of Representatives from the State 
of California and their political affiliations (as of March 15, 2004) 
 

  1. Mike Thompson (D)  
  2. Wally Herger (R)  
  3. Doug Ose (R)  
  4. John T. Doolittle (R)  
  5. Robert T. Matsui (D)  
  6. Lynn C. Woolsey (D)  
  7. George Miller (D)  
  8. Nancy Pelosi (D)  
  9. Barbara Lee (D)  
 10. Ellen O. Tauscher (D)  
 11. Richard W. Pombo (R)  
 12. Tom Lantos (D)  
 13. Pete Stark (D)  
 14. Anna G. Eshoo (D)  
 15. Michael M. Honda (D)  
 16. Zoe Lofgren (D)  
 17. Sam Farr (D)  
 18. Dennis Cardoza (D)  
 19. George P. Radanovich (R)  
 20. Cal Dooley (D)  
 21. Devin Nunes (R)  
 22. Bill Thomas (R)  
 23. Lois Capps (D)  
 24. Elton Gallegly (R)  
 25. Howard P. “Buck” McKeon (R)  
 26. David Dreier (R)  
 27. Brad Sherman (D)  
 28. Howard L. Berman (D)  
 29. Adam B. Schiff (D)  
 30. Henry A. Waxman (D)  
 31. Xavier Becerra (D)  
 32. Hilda L. Solis (D)  
 33. Diane Watson (D)  
 34. Lucille Roybal-Allard (D)  
 35. Maxine Waters (D)  
 36. Jane Harman (D)  
 37. Juanita Millender-McDonald (D)  
 38. Grace F. Napolitano (D)  
 39. Linda T. Sanchez (D)  
 40. Ed Royce (R)  
 41. Jerry Lewis (R)  
 42. Gary G. Miller (R)  
 43. Joe Baca (D)  
 44. Ken Calvert (R)  
 45. Mary Bono (R)  
 46. Dana Rohrabacher (R)  
 47. Loretta Sanchez (D)  
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 48. Christopher Cox (R)  
 49. Darrell Issa (R)  
 50. Randy “Duke” Cunningham (R)  
 51. Bob Filner (D)  
 52. Duncan Hunter (R)  
 53. Susan Davis (D) 
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CHAPTER 2: PARAMETERS 

Introduction 
It is often cumbersome, and unnecessary, to preserve all of 
the information contained in a frequency distribution for a 
population.  We therefore concentrate on a few indexes (indices?) 
called parameters that summarize the important features of a 
population distribution.  But what features should we emphasize?  
Karl Pearson and other statisticians have suggested that there 
are four things that we usually want to know about a given 
distribution: 
     1.  Its central tendency, i.e., some sort of average 
     measurement for the variable. 
     2.  Its variability or dispersion, i.e., some 
     indication of the extent to which the measurements 
     differ from one another. 
     3.  Its skewness, i.e., whether the distribution of the 
     measurements is symmetric or skewed, and, if the 
     latter, the direction and degree of asymmetry. 
     4.  Its kurtosis, i.e., the degree to which the 
     measurements tend to "pile up" at some point in the 
     distribution. 

Central tendency 
There are several popular indexes of central tendency, but 
the one that is used more often than all of the others put 
together is the arithmetic mean, or, more simply, the mean.  To 
find the mean of a set of measurements you add them up and divide 
by the number of them.  You've been doing that all your life, 
haven't you? 
 
The mean color (sounds funny, doesn't it?) of the 52 cards 
is the sum of the 26 1's and the 26 0's, which is 26, divided by 
52, which is .50.  This .50 is also the proportion of cards that 
are black (the 1's) and can of course be converted into a 
percentage, 50, by moving the decimal point two places to the 
right and affixing a % sign.  Proportions and percentages are 
therefore special kinds of means.  (Note:  If symbols other than 
0 and 1 are used to "code" the two colors, the mean color would 
NOT be the proportion of black cards.) 
 
The other dichotomy, "pictureness", has a mean of 12/52, or 
.231, or 23.1%, i.e., 23.1% of the cards are picture cards.  The 
mean for each of the playing card variables is listed in Table 
2.1 for each of the frequency distributions in Table 1.3. 
                   ___________________________ 
                   Insert Table 2.1 About Here 
                   ___________________________ 
 
Two other popular measures of central tendency are the 
median (the observation that divides the distribution in half) 
and the mode (the observation that occurs most frequently). 

Variability 
There are also several measures of variability.  The easiest 
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one, the range, is merely the difference between the lowest value 
and the highest value.  But the one that is used most often in 
scientific work is the standard deviation.  It is an index of 
dispersion around the arithmetic mean and is obtained as follows: 
 
     1.  Find the mean.  You already know how to do that. 
     2.  Subtract the mean from each of the measurements.  
     That's easy. 
     3.  Square each of those differences; i.e., multiply 
     each difference by itself.  That's easy, too, but 
     remember that a plus times a plus is a plus, and a 
     minus times a minus is also a plus. 
     4.  Add up all of those squared differences.  Also 
     easy, albeit tedious.  
     5.  Divide that sum by the number of measurements.  
     This is the variance, which is the mean of the squared 
     differences from the mean--if you follow that.  
     (Authors of some statistics books say to divide the sum 
     of the squared differences by one less than the number 
     of measurements.  The reasons for that are too 
     complicated to go into here, so forget it!) 
     6.  Take the square root of that quotient.   
 
You were fine up until that last step, weren't you?  What's 
the square root of a number?  It's another number which when 
multiplied by itself gives you the number you started with.  The 
square root of 4 is 2, since 2 times 2 is 4; the square root of 
49 is 7, since 7 times 7 is 49, and so forth. 
 
Let's work out the standard deviation of the color variable 
for the population of 52 cards: 
 
     1.  The mean is .50, as previously calculated. 
     2.  0 minus .50 is -.50 for each of the 26 0's; 1 minus 
     .50 is +.50 for each of the 26 1's. 
     3.  The square of -.50 is +.25; so is the square of +.50. 
     4.  The sum of those squares is 52 times .25, or 13. 
     5.  13 divided by 52 is .25 (the variance). 
     6.  The square root of .25 is .50 (since .50 times .50 
     is .25).  Therefore the standard deviation of the color 
     variable is .50.  (See Table 2.1 for this and for the 
     standard deviations of the other variables.) 
 
Got it?  If not, don't be discouraged.  You'll have lots of 
opportunities to practice the calculation of means and standard 
deviations when you work out the exercises at the end of this 
chapter. 
 
Since the standard deviation is the square root of the 
variance, and the variance is therefore the square of the 
standard deviation, choosing one of these two parameters over the 
other is largely a matter of personal preference.  For 
theoretical work the variance has the simpler mathematical 
properties, but for applied work the standard deviation is used 
more frequently.  The reason for this is the standard deviation 
is in the "right" units but the variance is in the "wrong" units.  
For example, if we had a population distribution of the number of 
eggs sold in various years by a dairy, the unit of measurement is 
eggs, the standard deviation comes out in eggs, but the variance 
comes out in squared eggs!!  (Do you see why?  Hint: Study the 
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six steps above very carefully and follow the unit of measurement 
to see where it gets squared and where it gets "unsquared".)   
How do you interpret a standard deviation?  It's best to 
think of the standard deviation as the "typical" difference 
between each measurement and the mean.  This works particularly 
well for the color data; every measurement is a half-unit away 
from the mean (the 0's are a half-unit below the mean and the 1's 
are a half-unit above the mean). 

Skewness and kurtosis 
The other two features of a population distribution, 
skewness and kurtosis, are usually of considerably less interest 
than central tendency and variability, but indexes of those two 
properties can also be obtained, as follows. 
 
Skewness: 1.  Find the mean. 
          2.  Subtract the mean from each measurement. 
          3.  Find the cubes of those differences, i.e. 
          get the third power of the differences by 
          multiplying each difference by itself, then 
          by itself again.  (Note: The cubes of the 
          plus differences will be plus but the cubes 
          of the minus differences will be minus.  Do 
          you see why?)  
          4.  Add all of those up. 
          5.  Divide by the total number of 
          measurements; i.e., find the mean of the 
          cubed differences. 
          6.  Divide that by the cube of the standard 
          deviation. 
 
Kurtosis: Same six steps, but instead of cubing the 
          differences and cubing the standard deviation 
          you raise them to the fourth power  (i.e., 
          you divide the mean of the fourth powers of 
          the differences by the fourth power of the 
          standard deviation). 
 
I won't go through all of the calculations (see Table 2.1 
for the answers), but the skewnesses of the distributions for the 
color, suit, and denomination variables are all equal to 0 (the 
cubes of the plus differences are "washed out" by the cubes of 
the minus differences).  All symmetric distributions have a 
skewness of 0.  Distributions whose histograms have a "hump" on 
the low end of the scale and a "tail" at the high end of the 
scale are called "skewed to the right" or "positively skewed"; 
their skewness is greater than 0.  Distributions whose histograms 
have a "hump" at the high end and a "tail" at the low end are 
called "negatively skewed" or "skewed to the left".  Although it 
has only two categories and the "hump" and the "tail" are not 
obvious, the "pictureness" variable is positively skewed. 
 
The larger the kurtosis (anything over 3--which is the 
kurtosis of the bell-shaped or "normal" distribution--can be 
considered large), the more the measurements tend to pile up 
around a single point.  Distributions with a kurtosis greater 
than 3 are sometimes called "leptokurtic"; those with a kurtosis 
less than 3 are called "platykurtic".  Since half of the colors 
are 0's and the other half are 1's that distribution has a very 
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low kurtosis (as you can see in Table 2.1 it's actually equal to 
1). 
 
Some textbook authors suggest that you subtract 3 from the 
final result of the kurtosis calculation, so that the normal 
distribution will have a kurtosis of 0 and the kurtosis of all 
other distributions can be evaluated with respect to 0 rather 
than 3.  Many computer programs have incorporated that 
recommendation.  
 
A final note about the word "parameter".  That term has at 
least two different meanings in the non-statistical world.  The 
first is synonymous with "dimension", as in "What are the 
parameters of this problem?"  The second is synonymous with 
"boundary", as in "Within what parameters are we permitted to 
operate?"  (This appears to me to be a confusion with the word 
"perimeter".)  Please try to suppress both of those meanings, at 
least as far as this book is concerned. 

Exercises 
1.  What is the range of the number of representatives for the 52 
"states"? 
 
2. Calculate the mean and the standard deviation for the number 
of members in the House of Representatives variable for the 52 
"states".  (Use the actual data in Table 1.5.) 
 
3. It can be shown that the standard deviation can be no 
larger than one-half of the range and no smaller than the range 
divided by the square root of twice the number of observations, 
regardless of the "shape" of the distribution.  Use that fact to 
check your calculation of the standard deviation in the previous 
exercise. 
 
4.  Calculate the skewness and the kurtosis for that same 
distribution.  Do those numbers make sense?  Why or why not? 
 
5.  You can compare the means and standard deviations of two 
distributions if the distributions have the same scale, in order 
to determine which distribution is "shoved over farther to the 
right" and/or which is more "spread out", but it is not 
appropriate to compare the means and standard deviations of two 
distributions if they have different scales.  Why is that? 
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Table 2.1:  Descriptive Parameters for the Population of Cards 
 
Variable #1:  Color 
 
mean = .5 
standard deviation = .5 
skewness = 0 
kurtosis = 1 
 
Variable #2:  Suit 
 
mean = 2.5 
standard deviation = 1.118 
skewness = 0 
kurtosis = 1.640 
 
Variable #3:  Denomination  
 
mean = 7 
standard deviation = 3.742 
skewness = 0 
kurtosis = 1.786 
 
Variable #4:  "Pictureness" 
 
mean = .231 
standard deviation = .421 
skewness = 1.279 
kurtosis = 2.628 
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CHAPTER 3: PERCENTAGES  

Introduction 
The only parameters that we shall be concerned with for the 
next six chapters are percentages and differences between 
percentages.  The reasons for this are: (1) simplicity and (2) 
ubiquity.  Percentages are generally easier to calculate and 
understand than other indexes, and they come up all the time.  

Cautions 
Just about everybody knows what a percentage is and how to 
get one.  A percentage is a measure of a part of a whole, and is 
calculated by dividing the number of things in the part by the 
number of things in the whole, multiplying by 100, and affixing a 
% sign.  For example, in the discussion in Chapter 1 of the 
"pictureness" variable for the population of playing cards it was 
pointed out that the number of face cards in a deck of cards is 
12 out of 52, or .231, or 23.1%  But percentages can be tricky, 
so a few cautions are in order. 
 
First, percentages corresponding to each of the parts must 
add to 100.  That may seem obvious, but it is surprising how 
often they don't in actual research reports.  One reason is 
rounding error.  That can be remedied by carrying out the 
calculations to a larger number of decimal places, but it's 
annoying.  (Is 20 out of 30 66%, 67%, 66.6%, 66.7%, 66.66%, or 
66.67%, for instance?)  Another reason has to do with situations 
such as overlapping groups of patients suffering from various 
ailments.  % lung cancer plus % AIDS plus % hypertension might 
very well add to more than 100 if some patients have been 
diagnosed as having two or more of those problems.  A third 
reason is missing data.  If religious preference, say, is being 
analyzed, there could be some subjects for whom such information 
is unavailable, and the percentages for the various religions 
will add to some number less than 100.  They could be made to add 
to 100 if the number of non-missing data values, rather than the 
total sample size, were taken as the base, but this can be very 
confusing to the reader.  It's best to include "missing" as an 
extra category. 
 
Reference was just made to the base upon which percentages 
are calculated.  That brings me to the second caution to be 
observed.  Be careful of the changing base.  There is an old joke 
about an employee who had to take a 50% decrease in salary from 
$400 a week to $200 a week, which the boss "restored" a month 
later by giving him a 50% increase.  Because of the change in the 
base he wound up at only $300 a week, not at the original $400.  
In research a common problem is that the investigator might try 
to compare a percentage for a total group at Time 1 with a 
percentage for a surviving group at Time 2.  Suppose that in a 
longitudinal study of a particular birth cohort of elderly people 
(say a group of people born in 1900) 5% had Alzheimer's disease 
at age 80 in 1980 but only 1% had Alzheimer's disease at age 90 
in 1990.  That doesn't mean that the cohort got better.  The base 
at age 80 may have been 1000 and the base at age 90 may have been 
700, with 43 of the original 50 Alzheimer's patients having died 
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between age 80 and age 90. 
 
A third caution has to do with the making of more than one 
comparison with percentages that have to add to 100.  For 
example, if there is a difference of 30% between the percentage 
of Christians in good health and the percentage of non-Christians 
in good health, there must be a compensating difference in the 
opposite direction between the percentage of Christians in bad 
health and the percentage of non-Christians in bad health.  A 
similar caution has to do with claims such as "80% of Christians 
are in good health, whereas only 20% are in bad health".  If 80% 
are in good health, of course 20% are in non-good, i.e., bad, 
health. 
 
The final caution concerns very small bases.  Percentages 
are both unnecessary and misleading when they are based on small 
sample sizes.  (It goes without saying, but I'll say it anyhow, 
that the base should ALWAYS be provided.)  If 80% of Christians 
are reported to be in good health and 50% of non-Christians are 
reported to be in good health, that is no big deal if there are 
just ten Christians and ten non-Christians in the total sample, 
since that is a difference of only three people. 

Exercises 
1.  What percentage of the "states" have seven letters in their 
names? 
 
2.  What percentage of the "states" have fewer than two or more 
than nine members of the House of Representatives?  Are there any 
rounding problems in determining that percentage?  Why or why 
not? 
 
3.  In Exercise #2b at the end of Chapter 1 you were asked to 
count the number of members of the House of Representatives from 
California who were Republicans.  What percentage of those people 
are Republicans? 
 
4.  Get out a good map of the United States (one that also includes the 
District of Columbia and Puerto Rico) and determine the percentage of 
the 52 "states" that are east of the Mississippi River? 
 
5.  Using that same map, what percentage of the "states" are north of 
the Mason-Dixon line. 
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CHAPTER 4: PROBABILITY AND SAMPLING 

Introduction 
There is much more to statistics than making frequency 
distributions for populations and summarizing various features of 
such distributions.  As a matter of fact, we usually don't even 
have all of the observations for an entire population (for 
obvious practical reasons such as cost and time) so we can't 
actually construct the population distribution and calculate its 
parameters.  What do we do?  We take a sample of the population, 
i.e., a "piece" of the population, get some data for the sample, 
and try to say something about the population data that we wish 
we had!  Sound confusing?  Perhaps an example might help. 
 
Suppose you had never seen a deck of cards before.  Someone 
shows you one, intact and face down, and says to you: "Shuffle 
the deck, draw four cards from the deck, look at them, and make a 
guess as to what the percentage of black cards is for the whole 
deck."  Take your deck of cards and do just that.  I did, and the 
four cards I drew were cards #14, #29, #30, and #40 in our 
population, i.e., the ace of diamonds, the three of hearts, the 
four of hearts, and the ace of spades.  (What cards did you 
draw?)  Since one out of the four cards in my sample is black 
(see Table 4.1 for the frequency distribution of the color 
variable for this sample), I would probably guess that 25% of the 
cards in the population are black.  This would be wrong, of 
course, but that's the whole point--my sample constituted a small 
portion of the population, so it would be unreasonable to expect 
that I would necessarily hit the correct percentage right on the 
button.  (What was your guess?  Were you right or wrong?)  
                   ___________________________ 
                   Insert Table 4.1 About Here 
                   ___________________________ 
 
The process of generalizing from sample data, which we do 
know, to population data, which we don't know, is called 
statistical inference.  The techniques for so doing are treated 
in Chapters 6 and 7, and they are called inferential statistics 
(as opposed to descriptive statistics, which are the techniques 
for summarizing whatever data we happen to have in hand).  But an 
understanding of statistical inference depends upon a knowledge 
of both probability and sampling, to which I would now like to 
turn. 

What is probability? 
There are all kinds of fancy definitions of probability in 
the statistical literature, but the one that is sufficient for 
our purposes is the following: 
 
       The probability of a particular outcome is its 
       relative frequency among a specified set of outcomes. 
 
You are already familiar with the concept of relative frequency, 
since it was discussed in Chapter 1.  In the playing card 
population the frequency of black (1), for example, is 26.  The 
relative frequency of black is 26 divided by 52, or .50, since 
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there are 26 black cards "out of" a total of 52 cards.  
Therefore, if you were to shuffle the cards and draw one card, 
the probability is .50, or one chance in two, that it would be a 
black card.  
 
Let's try some other examples: 
 
     1.  What is the probability of drawing a 9? 
     Answer:  4/52 or .077. 
 
     2.  What is the probability of drawing a face card? 
     Answer:  12/52 or .231. 
 
     3.  What is the probability of not drawing a face card? 
     Answer:  40/52 or .769. 
 
Probabilities are numbers between 0 (impossibility) and 1 
(certainty), and for any specified set of outcomes the respective 
probabilities must always add up to 1.  For example, the 
probability of drawing a face card is 12/52 or .231; the 
probability of not drawing a face card is 40/52 or .769.  12/52 + 
40/52 = 52/52 or 1.  (In decimal form, .231 + .769 = 1.)  
Therefore, if you know the probability that something will happen 
and you want to determine the probability that it won't happen. 
you can subtract the known probability from 1.  Using this same 
example, the probability of not drawing a face card = 1 - .231 = 
.769. 

Rules for calculating probabilities 
There are two useful rules for calculating complex 
probabilities from simpler probabilities: 
 
     Rule #1 (the "and" rule):  The probability that both of 
     two outcomes will take place is the product of the 
     probability that the first one will take place and the 
     probability that the second one will take place, given 
     that the first one took place (the so-called 
     conditional probability). 
 
     Rule #2 (the "or" rule):  The probability that either 
     of two outcomes will take place is the sum of the 
     probability that the first one will take place and the 
     probability that the second one will take place, if the 
     two outcomes cannot take place simultaneously. 
 
Those are a couple of mouthfuls, so let's take some 
examples: 
      

1.  What is the probability of drawing two spades in 
     two draws from a deck of cards, if the first card is 
     replaced before the second card is drawn? 
     Answer, by Rule #1:  13/52 x 13/52 = 1/4 x 1/4 = 1/16 
     or .0667. 
      

2.  What is the probability of drawing two spades in 
     two draws from a deck of cards, if the first card is 
     not replaced before the second card is drawn? 
     Answer, again by Rule #1:  13/52 x 12/51 = 1/4 x 4/17 = 
     1/17 or .0588. 
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Sampling with or without replacement 
In the first example the probability that the second card is 
a spade does not depend on whether or not the first card was a 
spade (since the first card is replaced), so for each draw there 
are 52 cards that could be sampled and 13 of them are spades.  In 
this case of sampling with replacement the two outcomes ("spade 
on first draw" and "spade on second draw") are said to be 
independent.  In the second example the probability that the 
second card is a spade does depend on whether or not the first 
card is a spade, because for the first draw there are 52 cards 
that could be sampled and 13 of them are spades, whereas for the 
second draw there are only 51 cards that could be sampled and 
only 12 of them are spades, given that the first card is a spade.  
In this case of sampling without replacement the two outcomes are 
not independent.  (Sampling with replacement essentially 
transforms a finite population into an infinite population, since 
there is always something left to sample.)   
 
Now for some more examples. 
 
     3.  What is the probability of drawing an ace or a king 
     in a single draw? 
     Answer, by Rule #2:  4/52 + 4/52 = 1/13 + 1/13 = 2/13 
     or .154.  (A single draw cannot yield a card that is 
     both an ace and a king; those two outcomes are said to 
     be mutually exclusive.) 
 
     4.  What is the probability of drawing two black cards 
     and two red cards in four draws from a deck of cards, 
     without replacement? 
     Answer, by extensions of Rule #1 and Rule #2 (hold on 
     to your hats for this one!):  Possible "favorable" 
     outcomes for this problem are all permutations of the 
     form BBRR (B=black, R=red), i.e., all sequences that 
     consist of two B's and two R's.  There are six of them:  
     BBRR, BRBR, BRRB, RBBR, RBRB, and RRBB.  They are all 
     mutually exclusive.  The probability of each is 26/52 x 
     25/51 x 26/50 x 25/49 (not necessarily in that order), 
     which works out to be .0650.  .0650 added to itself six 
     times is equal to 6 x .0650 or .390, i.e., about four 
     chances in ten. 

An empirical demonstration of probability 
Do you understand what's going on?  If not, be patient.  
Probability is tough stuff.  Maybe this will help.  Shuffle your 
cards, draw four cards without replacement and record what you 
drew, using symbols like AC for the ace of clubs, 7H for the 
seven of hearts, JS for the jack of spades, etc.   Repeat the 
whole process 50 times (i.e., shuffle, draw four cards, record 
the results), sampling without replacement within each drawing of 
four cards but sampling with replacement between each drawing of 
four cards (do you follow that?).  Please record the results of 
your 50 samples before reading on.  
 
Our calculations for Example #4, above, suggest that in 
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approximately 20 of those 50 samples you should get two blacks 
and two reds.  I say approximately because (1) .390 added to 
itself 50 times (i.e., 50 x .390) is not exactly 20; (2) you may 
not give the cards a thorough shuffling each time, which could 
affect the results; and (3) probability is a "long-run" notion 
that applies to a conceptually-infinite number of trials, and 
provides no guarantee as to what will happen in a "short-run" set 
of 50 samples.  What I'm trying to say is that you may get more 
than 20 "successes" (a "success" being the occurrence of two 
black cards and two red cards) or less than 20 successes.  How 
many did you get?  I tried it myself and my results are listed in 
Table 4.2.  As you can see, I got 30 successes, 10 more than the 
expected number, but that can happen "by chance". 
                   ___________________________ 
                   Insert Table 4.2 About Here 
                   ___________________________ 

Statistics and sampling error 
In Table 4.2 I have also included the percentage of black 
cards in each of my samples.  They range from 25 (1 black card 
out of 4) to 100 (all black cards); "by chance" none of my 
samples consisted of all red cards, i.e., no black cards.  The 
actual percentage of black cards in the population is 50 (the 
population mean--one of its parameters).  30 of my sample results 
(sample results are called statistics) were exactly equal to that 
parameter and the other 20 were not.  Whenever a statistic is not 
equal to its corresponding parameter a sampling error has been 
made.  We shall have a great deal to say about sampling errors in 
Chapter 5. 
 
Let me close this chapter with a few supplementary remarks.  
First, an assumption that underlies the previous discussion of 
probability and sampling is that the selection process should be 
random, i.e., that each of the objects in the population has an 
equal chance of being selected whenever a sample is drawn.  For 
the population of cards it is a thorough shuffling of the cards 
that satisfies the random criterion.  In scientific research 
other devices are employed, e.g., tables of random numbers.  But 
it is essential to realize that it is the process, not the 
outcome, that is random.  I might draw ten cards from a deck of 
cards with replacement and get the ace of spades every time, but 
still have a random process.  (The probability of getting the ace 
of spades on each draw is admittedly very small; an extension of 
Rule #1 gives an answer of 1/52 raised to the tenth power, which 
is about .00000000000000001, but it could happen!) 
 
My second remark concerns the difference between probability 
and odds.  The odds against a particular outcome is the ratio of 
the probability that the outcome will not take place to the 
probability that it will take place.  For example, the odds 
against drawing a spade in a single draw from a deck of cards is 
(3/4)/(1/4) = 3/1 (which is read as "3 to 1"), not 4/1 as is 
commonly believed. 
 
Finally, the matter of sample size.  The question most often 
asked of statisticians is "What size sample should I take?"  The 
statistician always answers that question with another question: 
"How far wrong can you afford to be when you make your 
statistical inference?"  Keep that in mind as you read the next 
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few chapters (it would be a good idea if you never forget it).  
We shall return to this important topic in Chapter 7. 
 

Exercises 
1.  For the frequency distribution that you constructed for 
Exercise #2a of Chapter 1, if you selected one "state" at random, 
what is the probability that it would have more than nine members 
of the House of Representatives? 
 
2.  If you selected two "states" at random, without replacement, what is 
the probability that they would both have more than nine members of the 
House of Representatives?  What if you selected them with replacement? 
 
3.  If you selected two "states" at random, with replacement, what is 
the probability that one of them would have more than nine members of 
the House of Representatives? 
 
4.  If you selected three California representatives at random, what is 
the probability that at least two out of the three would be Republicans? 
 
5.  How many different samples of four "states" could you draw 
without replacement from the population of 52 "states"? 
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Table 4.1:  A Frequency Distribution of Color for a Sample 
            of 4 Cards 
 
                                                  Relative 
Value          Tally               Frequency      Frequency 
 0             111                      3         .750 (75%) 
 1             1                        1         .250 (25%) 
                                        _ 
                                        4  
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Table 4.2:  50 Samples of 4 Cards from the Playing-card        
Population (* = a "success", i.e., 2 black cards and 2 red cards) 
 
Sample #  Sample        % Black    Sample #  Sample      % Black 
    1     10D,5C,KS,10S    75         26     KD,8C,QS,4H    50* 
    2     AC,QD,QC,AD      50*        27     KH,7S,JH,JS    50* 
    3     KS,8H,6S,10S     75         28     10H,8H,10D,JC  25 
    4     2C,5D,4S,AC      75         29     AC,AD,QC,8D    50* 
    5     10D,3S,2C,6D     50*        30     4S,5C,JH,4D    50* 
    6     KD,JS,10D,7S     50*        31     4S,2S,AS,KS   100 
    7     10S,4S,8H,2D     50*        32     8D,8H,2C,5S    50* 
    8     10C,6S,4H,QH     50*        33     2S,10H,4D,AH   25 
    9     QC,9D,3S,3C      75         34     3D,JC,5H,3S    50* 
   10     4S,9S,2C,3H      75         35     3S,9H,2S,KD    50* 
   11     4C,3C,9H,KD      50*        36     KC,AH,8S,9H    50* 
   12     QS,6C,AD,JH      50*        37     6S,JD,10H,6C   50* 
   13     5D,4C,AH,3S      50*        38     6S,JD,10H,6C   50* 
   14     10S,5C,3D,2S     75         39     JC,10C,QH,7D   50* 
   15     QC,6H,JD,2H      25         40     2C,2H,10C,3D   50* 
   16     8C,5H,9H,9C      50*        41     8H,JD,9S,9C    50* 
   17     3C,9C,AC,4D      75         42     5S,KH,8C,5C    75 
   18     7D,10C,8D,8H     25         43     2S,3D,3C,7H    50* 
   19     KH,8H,QS,KC      50*        44     5S,QD,2S,8S    75 
   20     3S,QC,AH,4S      75         45     KS,8H,9C,5D    50* 
   21     4H,QC,AH,AC      50*        46     KD,JH,7S,KS    50* 
   22     2H,6C,JH,AD      25         47     AS,3H,QS,6D    50* 
   23     QC,3C,10D,7S     75         48     8D,7C,2C,QH    50* 
   24     QC,6H,JC,8C      75         49     10D,4C,8C,5C   75 
   25     9C,9S,5D,10D     50*        50     4S,JS,8D,4C    75    
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CHAPTER 5: SAMPLING DISTRIBUTIONS 

Introduction 
The basis for all inferences from known sample data to 
unknown population data is the concept of a sampling 
distribution.  If you are content to merely describe the data 
that you do have, you don't need to know anything about sampling 
distributions, but if you are interested in the problem of 
generalizing from sample to population, you must understand this 
concept thoroughly. 

Definition of a sampling distribution 
Let's start with the definition of a sampling distribution, 
and then take it apart, piece by piece: 
 
     A sampling distribution is a frequency distribution of 
     a large number of values of a statistic for samples of 
     the same size randomly drawn from the same population. 
 
First of all, then, a sampling distribution is a special 
kind of frequency distribution.  You know what a frequency 
distribution is.  We've had lots of those already.  The crucial 
point is: what is it a frequency distribution of?  That brings us 
to the second part of the definition.  It is a frequency 
distribution of a statistic.  A statistic is a descriptive index 
for a sample, e.g., a sample mean, a sample standard deviation, 
etc.  A sampling distribution is not a distribution of all of the 
observations on a given variable for the population; that's a 
population distribution.  (All of the frequency distributions in 
Table 1.3 are population distributions.)  A sampling distribution 
is also not a distribution of the observations on a given 
variable for a sample; that's a sample distribution (see Table 
4.1 for an example of a sample distribution). 
 
That same part of the definition tells us that we must have 
a "large" number of values of a sample mean, a sample standard 
deviation, or whatever statistic we may be interested in.  But 
how large is large?  It depends upon whether you want to talk 
about a theoretical sampling distribution where you can calculate 
the frequencies (actually relative frequencies) of all possible 
values of the statistic; or an empirical sampling distribution 
where you must count the frequencies of the values you actually 
do obtain when drawing repeated samples.  In the latter case 
there is no precise definition of "large", but 50 values would 
seem to be a bare minimum.  Theoretical sampling distributions 
are always preferable since they deal with all possible samples 
and we don't have to worry about the actual mechanics of 
sampling, but there are some statistics whose theoretical 
sampling distributions are mathematically indeterminate.  For 
such statistics one has no other choice but to draw sample after 
sample, manually or by computer, and empirically generate the 
relevant sampling distributions.  
 
The last part of the definition stipulates that the samples 
must be of the same size and randomly drawn from the same 
population.  Those conditions are both intuitively reasonable and 
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mathematically necessary.  A sampling distribution based on some 
samples of size two and some samples of size ten, or some samples 
from one population and some samples from another population 
would be meaningless and intractable. 

An example of an empirical sampling distribution 
It's time for an example, isn't it?  Let's consider the 
empirical sampling distribution of the percentage of black cards 
for 50 samples of size four drawn from our playing-card 
population without replacement (within sample); we have to sample 
with replacement between samples or we would run out of cards 
after 13 samples!  Table 4.2 will serve very nicely to provide 
the necessary data, since that table includes the percentage of 
black cards that I obtained in each of my 50 samples.  The first 
value of that statistic is 75, the second is 50, ... the fiftieth 
is 75.  The desired sampling distribution is a frequency 
distribution of those 50 values, as displayed in Table 5.1. 
                   _____________________________ 
                   Insert Table 5.1 About Here 
                   _____________________________ 
 
That's how you get an empirical sampling distribution.  Note 
some of the surprising and some of the not-so-surprising features 
of this particular distribution: 
 
     1.  The value of the true percentage of black cards in 
     the population (the parameter), 50, was obtained 30 
     times in 50 samples, as pointed out in the previous 
     chapter.  It's too bad that I didn't get all 50's, but 
     at least I got more 50's than anything else, i.e., 50 
     is the mode of the sampling distribution. 
 
     2.  The distribution is skewed to the left (a little 
     heavy on the right).  That is intuitively disconcerting 
     since we would expect to be "off on the high side" 
     about as often as we are "off on the low side". 
 
     3.  Since 0, 25, 50, 75, and 100 are all of the 
     possible values, it is also disconcerting that I didn't 
     get any 0's, but I did get a 100.  (I actually drew a 
     second set of 50 samples and got a 0 in one of those 
     samples, but I also got four 100's!  Do you see what I 
     mean about 50 samples being a bare minimum base for an 
     empirical sampling distribution?) 
 
     4.  The mean of this sampling distribution is 55.5, the 
     standard deviation is 16.039, the skewness is -.788, 
     and the kurtosis is 3.112.  We can get the same sorts 
     of summary indexes for a sampling distribution that we 
     get for any frequency distribution. 
 
     5.  The relative frequency of each of the sample 
     percentages gives us an approximation to the 
     probability of getting the various values when we draw 
     a sample of four cards from the population of 52 cards. 

The corresponding theoretical sampling distribution 
Table 5.2 displays the theoretical sampling distribution for 
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this same statistic.  Let me explain how it was derived: 
 
     1.  The probability (relative frequency) of 0% (none out of 
     four) black cards is the same as the probability of four red 
     cards (the sequence RRRR), which is equal to 26/52 x 25/51 x 
     24/50 x 23/49, or approximately .055. 
 
     2.  The probability of 25% (one out of four) black 
     cards is the probability of BRRR or RBRR or RRBR or 
     RRRB.  Each of these has a probability of 26/52 x 26/51 
     x 25/50 x 24/49 (not necessarily in that order) or 
     .0625.  Therefore the probability of 25% black is 4 x 
     .0625 or .250. 
 
     3.  The probability of 50% black was calculated in the 
     previous chapter, and is .390. 
 
     4.  Since 75% black = 25% red, and black and red are 
     equally likely, the probability of 75% black is the 
     same as the probability of 25% red, which in turn is 
     the same as the probability of 25% black, the latter of 
     which was already determined to be .250. 
 
     5.  Similarly, the probability of 100% black = the 
     probability of 0% red = the probability of 0% black = 
     .055. 
                   ___________________________ 
                   Insert Table 5.2 About Here 
                   ___________________________ 
 
It is of considerable interest to compare the relative 
frequencies for the empirical sampling distribution with the 
corresponding theoretical sampling  distribution.  (I'll bet you 
did that already, didn't you?)  Considering that the empirical 
distribution is based on only 50 samples, the relative 
frequencies for the two distributions are not all that different 
from one another.  The fact that they are not identical is no 
cause for concern, since that is what chance is all about!  (If 
you still have the data for your 50 samples--see previous 
chapter--construct your own empirical sampling distribution for 
percent black and find out if it comes closer to the theoretical 
sampling distribution than mine did.) 
 
We could extend this example to other statistics, other 
variables, other sample sizes, other populations, and to 
conditions involving sampling with replacement within sample 
rather than sampling without replacement.  We would get a 
different sampling distribution each time we change any one of 
those factors.  (Remember that sentence and you'll be well on 
your way toward being an authority on sampling distributions.) 

Why do we need sampling distributions? 
We know how to get a sampling distribution, we know how a 
sampling distribution differs from a population distribution and 
a sample distribution, and we know there are lots of them.  What 
we don't know yet is why we need them!  Until we face up to that 
the whole thing is going to seem like a meaningless exercise a 
statistician might carry out if (s)he doesn't have anything 
better to do. 
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The reason we need them is that most of the time when we 
carry out a scientific study we will have one statistic for one 
sample, and if we don't know how that statistic varies from 
sample to sample, i.e., if we don't know its sampling 
distribution, we will have no foundation for making any kind of 
sample-to-population inference. 
 
The matter of "role definition" is important here.  The 
person carrying out the research doesn't actually generate the 
sampling distribution.  (S)he has enough to do in choosing the 
statistic of interest and drawing the sample, to say nothing 
about formulating the research problem, designing the study, etc.  
But somebody has to construct sampling distributions so that 
statistical inferences are possible.  That somebody, or those 
somebodies, are the mathematical statisticians, and the products 
of their labors are tables and formulas for distributions such as 
those for the normal, t, chi-square, and F sampling distributions 
that are found in the backs of most statistics book (but not this 
one!). 
 
Think of it as a symbiotic process.  Some mathematical 
statistician has to deduce the sampling distribution of a 
statistic for samples of various sizes drawn at random from some 
population, so that some scientist who has one statistic for one 
sample can induce whether or not that sample came from the 
specified population.  Such an induction is of course always 
subject to error (because of our old friend chance). 

Standard error 
A concept that is very closely associated with sampling 
distributions is the standard error.  A standard error is a 
standard deviation of a sampling distribution.  Standard error is 
actually an abbreviation for "standard deviation of sampling 
errors" (any statistic that is not equal to the corresponding 
parameter is a sampling error).  Since any standard deviation is 
a measure of the typical variability around the mean of a 
frequency distribution, a standard error is a measure of how 
tightly clustered the statistics are to their own mean (which for 
many sampling distributions is the parameter itself), i.e., how 
much they vary from one another.  The larger the sample size, the 
smaller the standard error, and the more accurate the inference 
from sample to population is likely to be. 
 
That's all I have to say about sampling distributions for 
now.  If you've got the concept, beautiful.  Hang onto it; don't 
lose it.  If you haven't got it, ask for help.  We'll keep coming 
back to it, but in increasingly restrictive contexts.  A firm 
grasp of the general notion is essential at this stage. 
 
In the next two chapters we shall see how sampling 
distributions are used in the most common kinds of statistical 
inferences, i.e., in point estimation, interval estimation, and 
hypothesis testing. 

Exercises 
1.  If you haven't already done so, take your deck of cards and a 
pencil, and write on each card the name of the "state" that corresponds 
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to the card (for example, on the ace of clubs you would write Delaware; 
on the two of clubs you would write Pennsylvania; etc.)--see Tables 1.1, 
1.4, and 1.5.   
 
 
2.  For the "east of the Mississippi" variable that you constructed in 
conjunction with Exercise #4, Chapter 3, generate an empirical sampling 
distribution of the percentage of "states" that are east of the 
Mississippi for 50 samples of size two sampled without replacement from 
the population of "states".  [Note that for each sample of size two the 
only possible values for the statistic, % east, are 0, 50, and 100.] 
                     
3.  What do you think would happen to that sampling distribution 
if you took samples of size five rather than size two?  Why?   
 
4.  What do you think would happen if you took 100 samples rather 
than 50?  Why? 
 
5.  Calculate the standard deviation of the sampling distribution 
that you generated in Exercise #2, i.e., its standard 
error.  How do you interpret that number? 
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Table 5.1:  An Empirical Sampling Distribution of % Black Cards 
            for 50 Samples of Size 4 Drawn Without Replacement 
            Within Sample and With Replacement Between Samples 
 
Variable = % Black 
 
Value                                                  Relative 
(of statistic) Tally                         Frequency Frequency 
  0%                                             0       .000 
 25%           11111                             5       .100 
 50%           111111111111111111111111111111   30       .600 
 75%           11111111111111                   14       .280 
100%           1                                 1       .020 
                                                __ 
                                                50 
 
mean = 55.5 
standard deviation (standard error) = 16.039  
skewness = -.788 
kurtosis = 3.112  
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Table 5.2:  The Theoretical Sampling Distribution of % Black for 
            Samples of Size 4 Drawn Without Replacement 
 
Variable = % Black 
 
Value                              Relative 
(of statistic)                     Frequency  
  0%                                 .055 
 25%                                 .250 
 50%                                 .390 
 75%                                 .250 
100%                                 .055 
 
mean = 50 
standard deviation (standard error) = 24.238 
skewness = 0 
kurtosis = 2.558 
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CHAPTER 6: ESTIMATION 

Introduction 
There are three kinds of inferences you can make from known 
sample data to unknown population data.  The first kind is called 
point estimation and is a declaration that a particular 
population parameter is equal to some specified value, based on 
the value of an obtained sample statistic.  For example, you 
might get a value of 75 for a sample percentage and estimate that 
the population percentage is also 75. 
 
But if your sample is small you may not feel comfortable 
about specifying one value, preferring instead to name two values 
between which you believe the parameter to lie.  For example, you 
might say that you believe that the population percentage is 
between 65 and 85.  That is an example of interval estimation, 
Both point estimation and interval estimation will be treated in 
this chapter. 
 
More commonly, however, before you collect any data 
whatsoever, you make a tentative "guess" that the parameter is 
equal to some specified value (based on either theory or hunch), 
and after collecting some sample data you decide whether or not 
that was a good guess.  For example, you might speculate that the 
population percentage is 60, get a value of 75 for the sample 
percentage, and reject 60 as a bad guess.  That is an example of 
hypothesis testing, which is the topic of the following chapter. 

Point estimation 
Point estimation is the easiest kind of statistical 
inference to talk about, but it is the kind that is least often 
employed, for the reason alluded to above, i.e., the smallness of 
most samples.  It's a good place to start, though, since many 
parameters have in some sense a "best" point estimator.  I use 
the word "estimator" rather than "estimate" for two reasons: (1) 
it is important to distinguish between what it is we do to the 
observations in the sample (the estimator) and the number that we 
arrive at (the estimate); and (2) we are always thinking in 
"long-run" terms regarding our optimal strategy.  I might make a 
wild conjecture that a particular parameter is equal to 10 and be 
lucky enough to be right just that once, but some other well- 
defined estimation procedure which is "off" that time might be 
the better bet generally.  As I've said before, that's what 
chance is all about. 
 
It turns out that the sample percentage (the statistic) is 
the best estimator of the population percentage (the parameter), 
but it is important to clarify the meaning of "best".  It is best 
in the sense that it is "unbiased", which is to say that the mean 
value of the statistic over repeated samples of the same size is 
equal to the parameter being estimated, i.e., the mean of the 
sampling distribution of the statistic is equal to the parameter.  
 
The sample percentage operates on the sample observations in 
exactly the same way as the corresponding population percentage 
operates on the population observations (add up the zeros and 
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ones, divide by the sample size, and multiply by 100), and is 
therefore an intuitively "best" estimator.  But this does NOT 
mean that you always hit the population percentage on the button 
by using the sample percentage to estimate it.  For any given 
sample it might be better to multiply the sample percentage by 
1.23 or .59, or whatever.  It DOES mean that if you use the 
sample percentage to estimate the population percentage you will 
be right "in the long run". 

An example of point estimation 
But enough of this; let's get to work.  Grab your deck of 
cards and draw a sample of 23 cards, this time with replacement 
(for a little variety), i.e., shuffle, draw, record, replace; 
shuffle, draw, record, replace; ... 23 times.  I'll do it, too.  
You make the same calculations for your cards that I do for mine.  
 
Here are my cards: 
     1. 8S     6. QS    11. 10D   16. 10C   21. 10C (a "repeat") 
     2. 7H     7. 4D    12.  6S   17.  4C   22.  9C (a "repeat") 
     3. AC     8. 3D    13.  JH   18.  4H   23.  QC (a "repeat") 
     4. QC     9. 2D    14.  9S   19.  JD    
     5. 2C    10. 7C    15.  9C   20.  3C 
 
     (Note that I got three "repeats", but no "re-repeats", i.e., 
the same card drawn three or more times.  How many of each did 
you get?) 
 
For the color variable, I have the following observations 
for those 23 cards (0 = red; 1 = black): 
     1.  1     6.  1    11.  0    16.  1    21.  1 
     2.  0     7.  0    12.  1    17.  1    22.  1 
     3.  1     8.  0    13.  0    18.  0    23.  1 
     4.  1     9.  0    14.  1    19.  0 
     5.  1    10.  1    15.  1    20.  1 
 
Since there are 15 1's (black cards) and 8 0's (red cards), 
the percentage of black cards in my sample is (15/23) x 100 = 
about 65.2.  What should I infer about the population percentage?  
 
In Chapter 2 we convinced ourselves that a percentage is a 
special kind of mean, so my unbiased estimate of the population 
mean (the population percentage) is 65.2.  That's too bad (the 
true value is actually 50), but it happens! 
 
There's not much else I can say about point estimation.  
Besides, I'm anxious to get on to interval estimation (my 
favorite kind of statistical inference), so let's do that. 

Interval estimation 
Since it is usually presumptuous to infer a single value for 
an unknown population parameter on the basis of a small sample, a 
more defensible procedure is to specify a range of values within 
which the parameter is alleged to lie.  The procedure is called 
interval estimation (as opposed to point estimation) and the 
resulting set of values is called a confidence interval.  The 
person making the inference has some specified amount of 
confidence that the obtained interval "captures" the relevant 
parameter. 
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The key to interval estimation is the concept of a standard 
error (treated at the end of the previous chapter), in 
conjunction with the shape of the sampling distribution of the 
statistic employed in the estimation process.  As I pointed out 
in that chapter, the standard error of a statistic is the 
standard deviation of its sampling distribution, and is a measure 
of how much a statistic for one sample of a given size tends to 
vary from a statistic for another sample of the same size from 
the same population.  If the sampling distribution is of the 
"normal" (bell-shaped) form, it can be shown that the probability 
is about .68 that a statistic will lie within one standard error 
of its corresponding parameter, is about .95 that it will lie 
within two standard errors, etc.  By turning this argument 
"inside out", so to speak, if you have one sample statistic 
(which is usually the case) and you lay off one standard error to 
the left and one standard error to the right, you can say you 
have a confidence level of .68 that the parameter is "captured" 
in your interval; if you lay off two standard errors left and 
right you can say you have a confidence level of .95 (i.e., you 
can be more confident) that the parameter is "captured"; etc.  
The greater confidence you desire, the wider the interval must be 
(all other things being equal). 
 
It's important to understand that this "tie-in" between one 
standard error and .68 confidence, between two standard errors 
and .95 confidence, etc. holds only for normal sampling 
distributions.  If the sampling distribution for a particular 
statistic of interest is not normal (and many of them are not), 
you may have to lay off either fewer than two standard errors or 
more than two standard errors for .95 confidence, for example.  
If the shape of the sampling distribution is unknown and 
indeterminate, you really don't know how many standard errors to 
lay off for various confidence levels.  Do you see now why 
sampling distributions are so important? 
 
The sample percentage is a statistic that does have an 
approximately normal sampling distribution, especially if we take 
a large sample with replacement.  If the population distribution 
is approximately symmetric, i.e., if the population percentage is 
not too far from 50, and if the sample size is not too small 
(about 20 or more), we can get a .95 confidence interval for the 
population percentage as follows: 
 
     1.  Find the sample percentage (the statistic). 
 
     2.  Calculate the standard error of the sample 
     percentage.  The mathematical statisticians tell us 
     that the standard error of the sample percentage is 
     approximately equal to the square root of the quantity 
     obtained by multiplying the population percentage by 
     the difference between the population percentage and 
     100 and dividing by the sample size, if the sampling 
     has been with replacement.  (If the sampling has been 
     without replacement, this must be further multiplied by 
     "the finite population correction factor", which is the 
     square root of the quotient of the population size 
     minus the sample size and the population size minus 
     one.)  This presents a bit of a dilemma since the 
     population percentage is unknown (that's what we're 
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     trying to estimate!), so we have to plug in the sample 
     percentage instead.  That sounds a little strange, but 
     there's nothing else we can do, and fortunately the 
     product of a percentage times the difference between a 
     percentage and 100 is very close to 2500 for 
     percentages that are very close to 50.  (Special note:  
     In a couple of the exercises at the end of the previous 
     chapter you calculated the standard error of your 
     empirical sampling distributions the same way a 
     standard deviation is usually calculated, but you had 
     just one set of samples, not all possible samples.  The 
     procedure just described applies to the theoretical 
     sampling distribution for sample percentages.) 
 
     3.  Lay off two standard errors to the left of the 
     sample percentage and two standard errors to the right 
     of the sample percentage.  (It's really 1.96 standard 
     errors, but that's close enough to 2 "for government 
     work"!)  The interval thus established is said to have 
     an approximately .95 chance of "capturing" (including, 
     "bracketing") the population percentage. 

An example of interval estimation 
Let's work through an example, using the 23 sample 
observations for the color variable displayed above: 
      

1.  The percentage of black cards in my sample is 65.2. 
       

2.  My estimate of the standard error is the square 
     root of the product of 65.2 and 34.8 divided by 23, 
     i.e., 9.9.  (Did you follow that?  Be sure to check all 
     of these calculations, slowly and carefully.) 
       

3.  My .95 confidence interval for the population 
     percentage therefore extends from 65.2 - 2(9.9) to 65.2 
     + 2(9.9), i.e., from 45.4 to 85.0.  The "after the fact" 
     probability is .95 that the interval from 45.4% to 85.0%  
     "brackets" the population value.  The probability is .05 
     that it does not.  Since the true population percentage is 50, 
     my inference is correct this time (again, in real life 
     I wouldn't know that), but it won't always be. 
      
So if I had to give one number that is my best single 
(point) estimate of the percent black, based on this sample of 23 
observations, I would say 65.2, but I would have little or no 
confidence in that estimate.  If I could give an estimate of an 
interval within which I believe that parameter to lie, I would 
say it was from 45.4 to 85.0.  That wouldn't narrow things down 
very much (the sample size is a bit small), but I would have a 
reasonably large chance of making a correct inference. 
      
There is of course nothing special about a .95 confidence 
interval (other than the fact that it is conventional).  The 
procedure is exactly the same for the .68, .99, or any of the 
other popular confidence levels.  All that will change is the 
number of standard errors that you lay off (one standard error 
for .68; 2.58 standard errors for .99; etc.--see any table of the 
normal distribution for the necessary values).  If you want to be 
very confident that you have captured the parameter, you must 
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give yourself lots of "leeway", i.e., lay off lots of standard 
errors. 
 
Get the picture?  Why don't you take the sample of 23 cards 
that you drew, write down the color of each, and construct your 
.95 confidence interval for the percent black in the population? 

Exercises 
1.  Draw a random sample of 30 "states", with replacement, and calculate 
an unbiased estimate (point estimate) of the percentage that is east of 
the Mississippi in the population.   
 
2.  Draw a second sample of the same size in the same way and get 
another estimate of that same parameter.  Then combine the two 
samples.  Which estimate is closest to the true population 
percentage--the estimate based on the first sample of 30 
"states", the estimate based on the second sample of 30 "states", the 
mean of those two estimates, or the estimate based on the 
combined sample of 60 "states"?  Does that make sense?  Why or why 
not? 
 
3.    a. Use your first sample of 30 to construct a .95 confidence 
interval for the percentage of east of the Mississippi in the 
population.  Did your interval include what you know (but wouldn't know 
in real life) to be the true parameter? 
 

b. Use your second sample of 30 and do the same thing.  Did you 
"win" or "lose" this time?   
 
4.  Would .68 confidence intervals be wider or narrower than your .95 
confidence intervals?  Why?  Would a .95 confidence interval 
for a sample of 60 be wider or narrower than a .95 confidence 
interval for a sample of 30?  Why? 
  
5.  For the combined sample of 60 "states", construct a .95 
confidence interval for the percentage of "states" with more than 
nine representatives and phrase the appropriate inference.  Was 
that a fairly wide or a fairly narrow interval?  Were you 
surprised?  Why or why not?  [By the way, how can you get a sample of 60 
"states" out of a population of 52 "states"?] 
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CHAPTER 7: HYPOTHESIS TESTING 
 

Introduction 
We come now to the most popular method of statistical 
inference.  I would venture to say that hypothesis-testing 
procedures are used in at least 90% of all research in which 
sample-to-population inferences are made.  I think that is 
unfortunate because, as we shall see, hypothesis testing is a 
rather awkward way to approach the inference problem and should 
be confined to a fairly small subset of applications where the 
actual magnitude of a parameter is of no interest, but its 
equality or non-equality to some specified value is. 
 
One of the bothersome things about hypothesis testing is all 
of the jargon that is associated with it.  But since the research 
literature is sprinkled with such terms you'd better get used to 
them.  So let's take the percent black problem we discussed in 
the previous chapter, put it in the hypothesis-testing framework, 
and make the warranted inference. 

A previous example re-considered 
You remember the situation.  We have decided to take a 
random sample of 23 cards drawn with replacement and we are 
interested in the percentage of black cards (the parameter) in 
the population from which the sample is to be drawn.  The first 
step in hypothesis testing is to state a hypothesis (that sounds 
reasonable!) regarding the parameter, before we draw the sample.  
(It would be cheating, wouldn't it, to state a hypothesis after 
we see some data?)  But what hypothesis? 

Null and alternative hypotheses 
The hypothesis that is actually tested is something called a 
null hypothesis.  It is called a "null" hypothesis for a variety 
of reasons: (1) the hypothesized value for the parameter is often 
zero; (2) it is the "conservative", "nothing special is going on" 
hypothesis; and (3) the researcher usually hopes that the sample 
data will "nullify", i.e., reject, that hypothesis.   
 
For our example, the null hypothesis that would be put to 
test is:  The percent black is equal to 50.   
 
Although 50 is not zero, that hypothesis is the "nothing special is 
going on" hypothesis, since ordinary playing card populations have 50% 
black cards (and 50% red cards), and if something special should 
be going on, i.e., if we have sampled an unusual deck of cards, 
then we would want to be able to reject the hypothesis that we 
have a usual deck.  (Do you follow that?  I told you that 
hypothesis testing is strange!) 
 
Things are actually a bit more complicated.  You have to 
test two hypotheses against one another, the "conservative" null 
hypothesis, which is one guess about a population parameter, and 
a "liberal" alternative hypothesis, which is another guess about 
the same parameter.  For our example, the alternative hypothesis 
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might be any one of the following: 
 
 
     Alternative hypothesis #1:  The percent black is not 
     equal to 50.  (This is the simple denial of the null 
     hypothesis.) 
 
     Alternative hypothesis #2:  The percent black is 
     greater than 50.  (This would be the appropriate 
     hypothesis if our theory or hunch were that the deck 
     we'll be sampling has an unusually high percentage of 
     black cards.)  
     
     Alternative hypothesis #3:  The percent black is less 
     than 50.  (This would be the appropriate alternative 
     hypothesis if our theory or hunch were that the deck 
     we'll be sampling has an unusually low percentage of 
     black cards.) 
      
     Alternative hypothesis #4:  The percent black is equal 
     to 60 (or 40, or 81, or whatever our theory or hunch 
     might be). 
 
The first of these is non-specific and non-directional, since it 
does not postulate any particular value for the parameter and it 
doesn't even stipulate whether the parameter is greater or less 
than the value hypothesized in the null.  The second and third 
alternatives are also non-specific, but they are directional, the 
former claiming that the parameter is greater than 50 and the 
latter claiming that the parameter is less than 50.  The fourth 
alternative is both specific and directional, since a particular 
value is hypothesized, and being specific it must be on one side 
or the other of the value hypothesized in the null. 

Back to the example 
Let's say that we wanted to test 50 against not-50.  We draw 
our sample and get 65.2% black cards.  Since 65.2 is not 50, the 
null hypothesis should automatically be declared false and the 
alternative hypothesis should automatically be declared true, 
right?  Wrong, for the following reasons: 
 
     1.  Our hypotheses are concerned with the population, 
     not with the sample. 
 
     2.  Although we got 65.2% black in the sample, there 
     could be 50% black in the population and our sample 
     result was a fluke, i.e., a sampling error.  Keep in 
     mind the distinction between a parameter and a 
     statistic. 
 
This is not to say that after considerable thought, and a few 
calculations, we won't decide to reject the null hypothesis after 
all (how's that for a quadruple negative!), but we must not 
(another negative!!) be too hasty. 
 
Here's what we have to do.  We have to determine the 
probability of getting a difference of 15.2% (= 65.2% - 50%) or 
more black cards in a sample of 23 cards if the population 
percentage is 50.  If that probability is low (less than .05, 
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say), then we would have sufficient evidence for rejecting the 
null hypothesis in favor of the alternative.  If that probability 
is high (greater than or equal to .05, for example), then the 
evidence would not be sufficient to reject the null hypothesis.  
(Do you follow that?  If so, great.  If not, hang on; it will 
come to you.) 
 
We find that probability by utilizing the sampling 
distribution for percent black, and its standard error (just as 
we did in the previous chapter for the interval estimation 
approach to statistical inference), as follows: 
 
     1.  Since the sampling distribution of percent black in 
     the sample is normal (if the percent black in the 
     population is close to 50 and the sample size is not 
     too small), we can determine the probability that any 
     sample percentage will differ from the population 
     percentage in terms of numbers of standard errors. 
 
     2.  The standard error of a sample percentage is the 
     square root of the product of the population percentage 
     and 100 minus the population percentage divided by the 
     sample size, so if the population percentage is 50 the 
     standard error is approximately equal to the square 
     root of 50 x 50 / 23 or 10.4.  This number differs 
     slightly from the 9.9 obtained in the previous chapter 
     since there we used 65.2 rather than 50 to calculate 
     the standard error.  We don't do that here.  We can 
     (nay, must) use the value of the parameter stipulated 
     in the null hypothesis that we're testing. 
 
     3.  Our sample percentage of 65.2 differs from 50 by 
     15.2 percentage points.  Since the standard error is 
     10.4 points, the discrepancy between our obtained 
     statistic and the hypothesized parameter is 15.2/10.4 = 
     1.46 standard errors.  Therefore the probability of 
     getting a discrepancy of 15.2% or more is the 
     probability that any measurement in a normal 
     distribution will differ from its mean by more than 
     1.46 standard deviations.  We could look that up in a 
     table of the normal distribution, but we know that the 
     probability must be greater than .05, since the 
     discrepancy would have to be two or more standard 
     errors for the probability to be that small.  Therefore 
     we do not have sufficient evidence to reject the null 
     hypothesis; there is a reasonably large probability 
     that our sample has been drawn from a population in 
     which the percent black is 50. 
 
That's the way hypothesis testing always works.  You 
formulate two hypotheses regarding some parameter (one null and 
one alternative); you draw a sample; you calculate the 
corresponding statistic; you use the sampling distribution of 
that statistic to determine the probability of getting a 
difference between statistic and parameter equal to or greater 
than the one you got; and you reject or fail to reject the null 
hypothesis according to whether that probability is small or 
large. 
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Your data 
In order to get a feel right now for hypothesis testing, 
take the data for your sample of 23 cards and go through the same 
steps I did, for the same null (the parameter is 50) and the same 
alternative (the parameter is not 50).  What was your decision 
regarding the null? 

Type I and Type II errors 
I was lucky.  I didn't reject the null, and the null was 
true.  (In real life I wouldn't know whether the null was true or 
false.)  If I had rejected a true null I would have made a 
mistake.  Such a mistake is called a Type I error.  But there is 
another kind of mistake I could have made.  I could actually have 
been sampling a "phony" deck of cards that didn't have an equal 
number of black and red cards, in which case I would have not 
rejected a false null hypothesis.  That kind of mistake is 
called, naturally enough, a Type II error.  How about your 
inference?  Did you make an error?  If so, was it a Type I or a 
Type II?   

One- and two-tailed tests 
The test of a null hypothesis against its simple denial is 
called a two-tailed test since it involves both ends ("tails") of 
the sampling distribution (discrepancies "on the high side" as 
well as discrepancies "on the low side").  If we want to test a 
null hypothesis against certain other kinds of alternative 
hypotheses (directional/specific or directional/non-specific) we 
must use a one-tailed test that involves discrepancies on either 
"the high side" or "the low side", but not both. 

Level of significance 
The probability that we regard as "small" (e.g., the .05 we 
referred to above) is called the level of significance or 
significance level, and if the probability of a particular 
outcome is less than that value the null hypothesis is rejected 
and the outcome is said to be "statistically significant" (my 
difference of 15.2% was not statistically significant).  The 
level of significance is therefore the probability of making a 
Type I error.  It is "researcher's choice" as to what level of 
significance should be used (the choice should depend upon the 
consequences of making a Type I error), but .05, .01, and .001 
are the popular ones. 

Power 
Determining the probability of making a Type II error is 
much more complicated.  It depends upon what the alternative to 
the null is.  If the value of the parameter postulated in the 
alternative hypothesis is very close to the value postulated in 
the null, the probability of making a Type II error is high 
(unless the sample size is very large), since the obtained 
statistic will be commensurate with either hypothesized value; so 
if the alternative is true, i.e., the null is false, the 
researcher will have a high probability of "sticking with" the 
null when it is false.  On the other hand, if the two 
hypothesized values are not very close to one another, the 
probability of making a Type II error is low, since the obtained 
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statistic will not be commensurate with both of them; so if the 
null is false the researcher will have a low probability of 
"sticking with" it.  (Do you follow that?  It's really 
important!) 
 
The probability of making a Type II error does not have a 
special name (comparable to level of significance for Type I 
error), but its complement, the probability of not making a Type 
II error (i.e., 1 minus that probability) does.  It's called the 
power of the test (the test of the null against the alternative).  
Since we want to have a low probability of making a Type II 
error, we want to have a high probability of not making a Type II 
error, i.e., we want a "high-powered" test.  Power is a function 
of sample size; the larger the sample size, the greater the power 
(all other things being equal). 

Testing the difference between two percentages 
The test of a null hypothesis regarding a particular value 
of a population percentage is fairly common in survey research.  
But an application of hypothesis testing that permeates just 
about all kinds of research is the test of the difference between 
two population percentages, e.g., the percentage of smokers who 
get lung cancer and the percentage of non-smokers who get lung 
cancer.  The null hypothesis in all such applications is that the 
difference is equal to zero; the alternative hypothesis is 
usually that the difference is not equal to zero, but 
occasionally some particular value such as 10% or 20% will be 
stipulated.  
 
Why the interest in zero vs. non-zero?  A zero difference 
would indicate that nothing special is going on; a non-zero 
difference would suggest that something special is going on.  For 
the smoking/lung cancer example, if there is a difference between 
smokers and non-smokers it would not only be interesting but 
perhaps something could be done about it (a special educational 
effort directed at smokers by the medical community, perhaps). 
 
The test proceeds as follows: 
     1.  The null and alternative hypotheses are stated. 
 
     2.  A sample is drawn at random from one of the 
     populations and another sample, independent of the 
     first sample, is drawn from the other population.  (The 
     two samples are independent whenever they are not 
     "matched" in any way.  There are some advantages and 
     some disadvantages of using independent samples, e.g., 
     you don't need to worry about what to match the two 
     samples on, but if you use matched samples and you're 
     smart enough to have matched the samples on the "right" 
     variable(s) you have a better test.) 
 
     3. The percent black (or female or Catholic or 
     whatever) for each sample and the difference between 
     the two percentages are calculated. 
 
     4.  The standard error of the difference between two 
     independent percentages is calculated.  The 
     mathematical statisticians tell us that the standard 
     error of that statistic is found by taking the square 
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     root of the following triple product: the percentage of 
     "1's" in the two samples combined times 100 minus that 
     percentage times the sum of the reciprocals of the 
     sample sizes.  (That's a mess, isn't it?  But hang on; 
     I'll go through all of the calculations in a second.) 
 
     5.  Divide the difference between the two sample 
     percentages by the standard error, refer that quotient 
     to the normal sampling distribution, and reject or not 
     reject the null hypothesis (of no difference in the 
     population percentages) accordingly. 

An example 
Now for an example.  I'll use the same 23 cards I drew 
before as one of the samples; and I've drawn 21 cards from a 
different deck of cards to provide the data for a second sample.  
Table 7.1 contains the cards that constitute each of the samples, 
the observations for the color variable, the percentage of black 
cards in each sample, the difference between those two 
percentages, and the standard error of the difference.  Let's use 
these data to illustrate the procedure for testing the 
significance of the difference between two independent sample 
percentages. 
 
     1.  Null hypothesis:  The difference between the two 
     population percentages is equal to zero. 
         Alternative hypothesis (one of several 
     possibilities):  The difference between the two 
     population percentages is equal to 20. 
 
     2.  I've got my two samples.  I drew them 
     independently, from two different populations (decks of 
     cards)--one from each population.  My two sample sizes 
     are not equal.  They don't have to be, but power (see 
     above) is maximized when the samples are similar in size. 
 
     3.  The percentage of black cards in my first sample is 
     65.2; the percentage of black cards in my second sample 
     is 66.7.  The difference is 1.5. 
 
     4.  The number of 1's in the combined sample is 15 + 14 
     or 29.  The percentage of 1's in the combined sample is 
     (29/44) x 100 or 65.9.  The standard error is therefore 
     the square root of the expression 
     65.9 x 34.1 x (1/23 + 1/21), which is equal to 14.3. 
 
     5.  The difference between the two sample percentages, 
     1.5, is less than one standard error, so the 
     probability of getting such a difference, if the null 
     hypothesis is true, is much greater than .05.  
     Therefore the null cannot be rejected and the 
     difference of 1.5% is not statistically significant. 
                   ____________________________ 
                   Insert Table 7.1 About Here 
                   ___________________________ 
 
A few remarks are in order here.  First, since the 
difference between the two sample percentages is 1.5, which is 
much closer to 0 than to 20, the evidence clearly supports the 



 Page 46 

null hypothesis.   
 
Second, and closely related to the first remark, I may have 
just made a Type II error.  That is, the null hypothesis could be 
false (I know it's true since both of my decks have 50% black 
cards, but in real life I wouldn't know that!) and the 
alternative hypothesis (that there is a 20 point difference in 
percent black) could be true, but my sample sizes are just too 
small for me to have been able to make the correct inference.  In 
our recently-acquired statistical jargon, I may not have had 
enough power.  The probability that I have made a Type II error 
can actually be calculated for this example, but it's a bit 
complicated so I won't bore you with the calculations (the answer 
is about .70, which is a very high error probability).  The 
probability that I have made a Type I error, i.e., that I have 
rejected a true null hypothesis, is actually equal to zero (no 
matter what significance level I may have implicitly been using), 
since I didn't reject it!  Before you make your inference you 
have some non-zero probabilities of making both kinds of errors, 
but after you make your inference you only have one kind of error 
to worry about.  That's sort of comforting, isn't it? 
 
Third, the matter of combining the data for the two samples 
to get a single estimate of the percent black.  If the null 
hypothesis is true, i.e., if both populations have the same 
percent black, you can get a better estimate of what that common 
percentage is by "pooling" the data for the two samples than you 
can get for either of them, since the "pooled" estimate is based 
on 44 rather than 23 or 21 observations. 

Power and sample size 
I would like to close this chapter by pursuing the matter of 
power and its relationship to sample size.  There is obviously 
nothing special about having 23 and 21 observations in the two 
samples.  How many should I have drawn?  Ah, do you remember what 
I said in a previous chapter about the question most often asked 
of statisticians, and what their reply is?  How many observations 
I should have in each sample depends upon how far wrong I can 
afford to be when I make my inference.  In fact it depends on 
three things: 
     1.  The alternative hypothesis you're testing against 
     the null. 
 
     2.  Your chosen significance level, i.e., the risk 
     you're willing to take of rejecting a true null; in 
     other words, the probability of making a Type I error 
     (before seeing the sample data). 
 
     3.  The power you desire, i.e., the probability of not 
     making a Type II error (again, before you see the 
     sample data). 
 
Formulas and tables for selecting sample sizes are provided 
in many statistics textbooks.  I have constructed an abbreviated 
table (Table 7.2) of sample sizes that are recommended for 
testing the significance of the difference between two 
independent sample percentages for typical significance levels 
and desired powers. As you can see from that table, in order to 
test the null hypothesis of no difference against an alternative 
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hypothesis of a 20% difference, if I wanted to have "equal 
protection" against Type I error and Type II error of .05 (power 
= .95) I should have drawn 162 observations from each of my 
populations, not 23 or 21.  For those small sample sizes the 
probability is much less than .80 that I would reject the null if 
it were false.  With sample sizes around 25, the difference in 
the two population percentages would have to be 40 or more for me 
to have even a .80 probability of rejecting a false null 
hypothesis (since 25 is the appropriate sample size for a 
difference of 40%, the .05 significance level, and .80 power). 
                   ___________________________ 
                   Insert Table 7.2 About Here 
                   _____________________________ 
 
As you can see, very large sample sizes are required to test 
for small percentage differences.  That makes sense, since it is 
hard to differentiate between a null hypothesis of no difference 
and an alternative hypothesis of a little difference.  (I didn't 
even include the sample sizes required for testing differences 
such as 1% or 2%, but believe me they are astronomical!)  

Exercises 
1.  Dichotomize the 52 "states" into two sub-populations: fewer 
than five representatives vs. five or more representatives.  Draw 
a random sample of 30 states, with replacement, from each of 
those sub-populations and test the null hypothesis that the two 
sub-populations have equal percentages of states that are east of 
the Mississippi River (against the alternative hypothesis that 
they do not). 
 
2.  Is the null hypothesis in Exercise #1 true or false?  Did you 
reject it?  Was your inference correct or incorrect?  If not, did you 
make a Type I error or a Type II error?   
 
3.  Was the sample size of 30 appropriate?  Why or why not? 
 
4.  Draw a sample of three California representatives, with replacement, 
and test the null hypothesis that 50% of the representatives from 
California are Republicans.  [Hint: Since that sample is so small, do 
this using either or both of the probability "rules" in Chapter 4.] 
 
5.  Think about what you just did in the previous exercise.  How likely  
is it that you could reject any null hypothesis concerning the 
percentage of California Republicans in the House of Representatives?  
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Table 7.1: An Example of a Test of the Significance of the 
           Difference Between Two Independent Sample Percentages 
 
 
Sample 1 (23 observations): 
Card Observation    Card Observation    Card Observation 
 8S       1         10D       0         10C       1 
 7H       0          6S       1          9C       1 
 AC       1          JH       0          QC       1 
 QC       1          9S       1 
 2C       1          9C       1         % black = 65.2 
 QS       1         10C       1                        
 4D       0          4C       1                          
 3D       0          4H       0 
 2D       0          JD       0 
 7C       1          3C       1 
 
 
 
Sample 2 (21 observations)*: 
Card Observation    Card Observation    Card Observation 
 4S       1          7S       1          AS       1 
 8H       0          3C       1                     
 3C       1          AS       1         % black = 66.7  
 KD       0          KC       1         
 AH       0          3C       1         Difference = 66.7 - 65.2 
 9S       1          8C       1                    =  1.5 
 KH       0          4H       0         Standard error = 14.3  
 JC       1          9D       0     The difference is less than  
 4H       0          3S       1     one standard error (not 
10C       1          AS       1     statistically significant). 
                                    The null hypothesis is 
                                    "accepted" (not rejected).    
                                                        
 
* This sample had several repeats, re-repeats, and re-re-repeats, 
including the ace of spades twice in succession! 
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Table 7.2:  Approximate Sample Sizes for an Optimal Test of the 
            Statistical Significance of the Difference Between 
            Two Equal-sized Independent Sample Percentages (two- 

tailed test; tabled values are the number of observations in 
each sample) 

 
Difference               Significance Level 
Specified 
in the              .05                       .01 
Alternative 
Hypothesis     Desired Power             Desired Power 
 
            .80     .95     .99       .80     .95     .99 
 
10%         392     650     919       584     891    1202 
20%          98     162     230       146     223     300  
30%          44      72     102        65      99     134 
40%          25      41      57        36      56      75 
50%          13      21      30        19      29      40 
 
 
Source:  Cohen, J. (1988).  Statistical power analysis for the 
behavioral sciences (2nd ed.).  Erlbaum.  (Tables 6.2.1, p. 181, 
and Table 6.4.1, p. 206.) 
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CHAPTER 8: 2x2 CONTINGENCY TABLES 
 

Introduction 
 
Information regarding the difference between two independent 
percentages is often displayed in a contingency table (sometimes 
called  a cross-tabulation, or "cross-tab").  Contingency tables 
are also useful in conjunction with a technique called 
"elaboration".  This chapter is devoted to such matters. 

Displaying frequency data in a two-by-two table 
 
Let's start with an example.  I'll use the same example I 
exploited near the end of the previous chapter, i.e., the test of 
the difference between the percentage of black cards in one deck 
of cards and the percentage of black cards in another deck of 
cards (see Table 7.1 for the raw data).  Here is the way the 
principal information is often displayed: 
 
                          Deck 2         Deck 1 
          Black           14 (66.7%)     15 (65.2%)       29 
          Non-black        7 (33.3%)      8 (34.8%)       15 
          (Red) 
                          21             23               44 
           
This is called a "two-by-two", usually written as "2x2", 
contingency table, since it has two rows (horizontal) and two 
columns (vertical)--the other numbers 29, 15, 21, 23, and 44 are 
"marginal" totals.  The usual convention followed is to 
designate as column headings the categories of the "independent" 
variable--the potential "cause" (in this case the type of deck) 
and to use as row headings the categories of the "dependent" 
variable--the potential "effect" (in this case the color of the 
card).   

Doing the percentaging and comparing the percentages 
The "percentaging" is done by columns (we take the 15 out of 
the 23 and get 65.2%, for example, not out of the 29 and not out 
of the 44) and the resulting percentages are compared across the 
rows (for example, the 66.7 against the 65.2, just as we did in 
the previous chapter). 
 
Several cautions must be observed.  First of all, the 
percentages must total 100 for each of the columns, as explained 
in Chapter 3.  Secondly, the observations as well as the samples 
must be independent of one another.  This is a complex topic, but 
the thing that most often produces non-independent observations 
is counting a particular object in more than one category.  
Finally, the total sample size should be reasonably large, as 
pointed out in the previous chapter. 

Relative risks and odds ratios 
Although the emphasis is usually placed on the difference 
between the two percentages in the first row of the contingency 
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table, it is fairly common in certain research studies, primarily 
in epidemiology, to emphasize the quotient of those percentages 
in addition to, or instead of, their difference.  That quotient 
is often referred to as the relative risk (for reasons 
associated with the jargon of epidemiological research).  For our 
example the quotient of 66.7 and 65.2 is 1.02, so the relative 
risk of Deck 2's yielding a black card--compared to Deck 1 
(sounds funny, doesn't it?)--is 1.02, i.e., 2% higher for Deck #2 
than for Deck #1.  (Some researchers prefer to put the smaller 
percentage in the numerator and the larger percentage in the 
denominator.  For our example the relative risk of Deck 1's 
yielding a black card would be 65.2/66.7, or .98.) 
 
There is another concept associated with relative risk 
that is of even greater interest to epidemiologists and it is the 
odds ratio.  It is computed by dividing the product of the 
upper-left corner frequency in the 2x2 table and the lower-right 
frequency by the product of the upper-right and lower-left 
frequencies.  For our table that ratio is (14 x 8)/(15 x 7) = 
1.07.  The odds ratio is a good approximation to the relative 
risk when the two percentages being compared are very close to 
one another and when the relative frequency of the "disease" is 
small.  (In our example the "disease" is "yielding a black 
card"!)  The odds ratio and its logarithm have very nice 
mathematical properties.   

Elaboration 
There are occasions on which we would like to explore the 
data further by statistically controlling for one or more 
variables that might affect the simple difference between two 
percentages.  For example, in cigarette smoking/lung cancer 
research the investigator might not be content to merely compare 
the difference in % lung cancer for smokers vs. non-smokers.  It 
could be suspected that the smokers were more likely to live in 
areas that have a great deal of air pollution and the non-smokers 
were more likely to live in areas that have little or no air 
pollution.  It would therefore be of considerable interest to see 
if the difference in % lung cancer for smokers and non-smokers 
was approximately the same for people living in heavily polluted 
areas as for people living in lightly polluted areas.  This would 
necessitate the construction of two 2x2 tables, one for heavy 
pollution and one for light pollution. 
 
We can illustrate this by using our deck of cards example.  
Think of Deck 2 as Smokers, Deck 1 as Non-smokers; Black card as 
Lung Cancer, Non-black card as No Lung Cancer; and Face card as 
Heavy Pollution, Non-face card as Light Pollution.  Referring to 
the actual cards drawn (see Table 7.1), the required 2x2 tables 
are the following (be sure that you check my numbers): 
 
For Face cards: 
                          Deck 2         Deck 1 
          Black            2 (50%)        3 (60%)       5  
          Non-black        2 (50%)        2 (40%)       4 
                           4              5             9 
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For Non-face cards: 
                          Deck 2         Deck 1 
          Black           12 (70.6%)     12 (66.7%)    24 
          Non-black        5 (29.4%)      6 (33.3%)    11 
                          17             18            35 
 
Although the actual frequencies are very small, from these 
elaborated tables we can see that when controlling for 
"pictureness" (boy, that really sounds funny!) the difference in 
% black is 60% - 50% = 10% "in favor of" Deck 1 for face cards 
and is 70.6% - 66.7% = 3.9% "in favor of" Deck 2 for non-face 
cards (vs. 1.5% "over-all").  Therefore the results are fairly 
similar whether or not "pictureness" is controlled.  Imposing the 
smoking/lung cancer vocabulary on this artificial example, we 
would say that the effect of cigarette smoking on lung cancer is 
essentially the same in heavily polluted areas as it is in 
lightly polluted areas. 
 

Exercises 
1.  Create two decks (populations) of cards out of your single 
deck.  Let the first deck (population) consist of all of the 
clubs, all of the diamonds, and the heart face cards.  Let the 
second deck (population) consist of the rest of the hearts and 
all of the spades.  Make a frequency distribution of the east-of-the-
Mississippi variable for each of the two artificial populations of 
"states", with black = east and red = west.  Draw a sample of 20 cards, 
with replacement, from each of the two populations and determine the 
percentage of east in each of the two samples and the difference between 
the two sample percentages.  Test the null hypothesis that those two 
samples come from populations that have the same % east, using the 
procedure outlined in the previous chapter.  (You know that this 
hypothesis is false, since you have created two populations having 
different percentages of east, but...complete this sentence in 25 words 
or less!)  Was your decision regarding the null hypothesis correct or 
incorrect?  If incorrect, what kind of error did you make, Type I or 
Type II? Why? 
 
2.  Display the sample data for Exercise #1 in a 2x2 contingency 
table, with all of the sample frequencies and associated 
percentages.  Calculate the relative risk of yielding east for 
the two samples, and also the sample odds ratio.  Are those two 
numbers fairly close or not?  Why do you think that is? 
 
3.  Now suppose that you had taken a sample of 200, rather than 
20, from each of the two populations but the percentage of east 
in the two samples were the same as for the two samples of 20.  
What do you think your decision regarding the null hypothesis 
would have been?  Would you be more likely, less likely, or 
equally likely, to make a Type I error?  A Type II error?  What 
effect, if any, would that have on the relative risk and the 
odds ratio?  Why? 
 
4.  Repeat Exercise #1 for the variable "Number of Representatives 
greater than nine)". 
 
5.  Repeat Exercise #2 for that variable.   
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CHAPTER 9: WHERE DO YOU GO FROM HERE? 

Introduction 
There is much more to the study of statistics than I have 
been able to cram into the previous eight chapters.  But I assure 
you that we have covered the essential concepts, all of which can 
be subsumed under the following key terms: 
               population 
               parameter 
               sample 
               statistic 
               sampling distribution 
 
Sometimes you have access to the entire population of 
interest, in which case you make your measurements and calculate 
the relevant parameter(s).  Most of the time you don't, so you 
take a sample from the population, calculate a statistic for that 
sample, and by using the appropriate sampling distribution you 
either estimate or test a hypothesis about the corresponding 
parameter.  We've studied lots of examples of just how you go 
about doing that. 

Various destinations 
The topics that are not included in this book are very 
similar to the ones that are.  They merely involve different (and 
usually more complicated) populations, parameters, samples, 
statistics, and sampling distributions. 
 
One direction in which you might consider going will lead 
you to the general linear model that includes the Pearson product-moment 
correlation coefficient, regression analysis, the t test, and the 
analysis of variance and covariance.  The inferential aspects of the 
general linear model are subsumed under the heading of parametric 
statistics, since certain assumptions about the population distributions 
and their parameters are made, such as the equality of population 
variances when testing the significance of the difference among several 
sample means.  
 
Another direction leads to certain descriptive statistics for which 
there are nonparametric (distribution-free) inferential statistics.  
Here's an example of one of them--the Spearman rank correlation 
coefficient: 
 
In Chapter 1 I provided a listing of the 52 "states" in the order in 
which they were admitted to the union.  Suppose you were interested in 
the relationship between order of admission and number of inhabitants; 
or the relationship between order of admission and land area; or the 
relationship between number of inhabitants and land area.  The rank-
ordering of the 52 "states" with respect to number of inhabitants (as of 
the 2000 census) and with respect to land area are as follows (the rank-
ordering with respect to admission to the union is repeated in the 
second column): 
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  state   admrank  nhabrank  arearank 
  
   DE        1       46        50 
   PA        2        6        32 
   NJ        3        9        46 
   GA        4       10        21 
   CT        5       30        48 
   MA        6       13        45 
   MD        7       19        42 
   SC        8       26        40 
   NH        9       42        44 
   VA       10       12        37 
   NY       11        3        30 
   NC       12       11        29 
   RI       13       44        51 
   VT       14       50        43 
   KY       15       25        36 
   TN       16       16        34 
   OH       17        7        35 
   LA       18       22        33 
   IN       19       14        38 
   MS       20       32        31 
   IL       21        5        24 
   AL       22       23        28 
   ME       23       41        39 
   MO       24       17        18 
   AR       25       34        27 
   MI       26        8        22 
   FL       27        4        26 
   TX       28        2         2 
   IA       29       31        23 
   WI       30       18        25 
   CA       31        1         3 
   MN       32       21        14 
   OR       33       29        10 
   KS       34       33        13 
   WV       35       38        41 
   NV       36       36         7 
   NE       37       39        15 
   CO       38       24         8 
   ND       39       48        17 
   SD       40       47        16 
   MT       41       45         4 
   WA       42       15        20 
   ID       43       40        11 
   WY       44       52         9 
   UT       45       35        12 
   OK       46       28        19 
   NM       47       37         5 
   AZ       48       20         6 
   AK       49       49         1 
   HI       50       43        47 
   DC       51       51        52 
   PR       52       27        49 
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The rank-correlations are as follows (see Siegel & Castellan, 1988 or 
almost any other statistics book for the procedure for calculating the 
Spearman rank-correlation coefficient.  +1 is indicative of a perfect 
direct relationship; -1 is indicative of a perfect inverse relationship; 
and 0 is no relationship): 
 
admission and number of inhabitants:  .419 
 
admission and land area: -.537 
 
number of inhabitants and land area: .033 
 
Surprised?  The .419 suggests that there is a tendency for the earlier 
admitted "states" to have larger numbers of inhabitants.  The -.537 
suggests that the earlier admitted states have smaller land areas 
(remember the Louisiana Purchase and Seward's Folly!)  The .033 suggests 
that there is little or no relationship between number of inhabitants 
and land area, which is too bad since it indicates that some states are 
overcrowded and others have lots of room. (As if we didn't already know 
that.  The number of inhabitants per square mile densities actually 
range from 1.1 for Alaska to 9378 for the District of Columbia!) 
 
[Those of you who may be familiar with the Pearson product-moment 
correlation coefficient may be wondering why I have chosen to not use 
that statistic to summarize the relationships between these pairs of 
variables.  There are several reasons: 
 
1.  It would require having the raw data (dates of admission to the 
union, number of inhabitants, and number of square miles of land area) 
for all three variables.  (I happen to have such data but I have not 
included them in this book.) 
 
2.  The Pearson correlation is an index of the direction and the 
magnitude of the LINEAR relationship between two variables.  (I've 
plotted the actual values against one another and those plots are 
definitely non-linear.) 
 
3.  The Pearson correlation is affected by "outliers" (unusually large 
or unusually small observations) whereas the Spearman rank correlation 
is not.  There are outlierss in the actual raw data.  For example, 
Alaska has a very small population and a very large land area. 
 
Some of you may also be wondering why I have not indicated whether or 
not these correlations are statistically significant.  Think about that.  
To what population would I be generalizing?  The rank correlations are 
what they are; they are neither statistically significant nor 
statistically non-significant.] 
 
As this book draws to a close I should have some additional 
words of wisdom to pass along to you as you prepare to go forth 
to meet the cruel statistical world.  But all I can think of to 
say is that if you really understand the five terms listed at the 
beginning of this chapter you will always know what statistics is 
all about.  The converse unfortunately also holds: if you do not 
understand those five terms you will never know what it's all 
about.  I hope and pray that you fall into the former category. 
 
Good luck!  It's been fun. 
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An annotated bibliography of recommended sources 
(Note: Some of these sources may strike you as a bit old.  Many are 
"classics" and/or are particular favorites of mine.) 
 
Agresti, A. & Finlay, B. (1986).  Statistics for the social 
sciences (2nd. ed.)  Dellen. 
 
     This is an excellent text for students who are 
     concentrating in sociology, psychology, or any of the 
     social sciences. 
 
Cohen, J. (1988).  Statistical power analysis for the behavioral 
sciences (2nd. ed.).  Erlbaum. 
 
     Cohen provides a lucid discussion of the concept of 
     power, along with a variety of formulas and tables for 
     determining the appropriate sample size for a number of 
     common hypothesis-testing procedures. 
 
Darlington, R. (1990).  Regression and linear models (2nd. ed.).  
McGraw-Hill. 
 
     Darlington's book is one of the best textbooks for 
     regression analysis and the general linear model.  
  
Fleiss, J. (1981).  Statistical methods for rates and proportions 
(2nd. ed.). Wiley. 
 
     This is the only other statistics book I know of that 
     concentrates on rates, proportions, and of course 
     percentages (just like mine does).  The mathematics 
     gets heavy at times, but the effort required to get 
     through the notation and the formulas is well worth it. 
 
Freedman, D., Pisani, R., Purves, R., & Adhikari, A. (1991).  
Statistics (2nd. ed.).  Norton. 
 
     This very popular text provides the reader with a 
     thorough grounding in basic concepts.  The 
     illustrations are particularly informative and often 
     hilarious.  
 
Huff, D. (1954).  How to lie with statistics.  Norton. 
 
     An "old", very amusing, but also very informative, 
     spoof of statistics. 
 
Huff, D. (1959).  How to take a chance.  Norton. 
 
     A comparable spoof of probability. 
 
Jaeger, R. (1990).  Statistics: A spectator sport (2nd. ed.).  
Sage. 
 
     This splendidly written text discusses the basic 
     concepts of statistics, measurement, and research 
     design, as well as a number of advanced statistical 
     techniques (e.g., the analysis of variance and the 
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     analysis of covariance) near the end of the book.  And 
     it also has no formulas! 
 
MacNeal, E. (1994).  Mathsemantics.  Viking Press. 
 
     As the title of this book implies, MacNeal is concerned 
     with both the doing of mathematics and the meaning of 
     mathematics.  His chapter on percentages, and how 
     poorly they are understood by the general populace, is 
     particularly interesting. 
 
Siegel, S. & Castellan, J. (1988).  Nonparametric statistics for 
the behavioral sciences (2nd. ed.).  McGraw-Hill. 
 
     This revised "cookbook classic" contains descriptions 
     and examples of all of the popular nonparametric tests 
     of statistical significance, including that for rank correlation. 
 
Special references: 
     "Against All Odds" is a series of 26 videotaped programs 
     on various topics in statistics that is distributed by 
     Intellimation, P.O. Box 1922, Santa Barbara, CA 93116- 
     1922.  The audio-visual aspects are impressive, and the 
     examples are varied and interesting, but there are 
     several errors in the statistical content of which you 
     should be aware.  (See the review of "Against All Odds" 
     by Gabriel et al. in the November, 1991 issue of The 
     American Statistician.) 
 
     John Pezzullo's website has an extraordinarily large and wonderful 
     collection of information and computational procedures for various 
     statistics.  (See esp. his Interactive Statistics pages.) 
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ANSWERS TO (MOST OF) THE EXERCISES 
 
(Note:  Some of the exercises do not have "right" answers, 
because the answer depends upon which cards are actually drawn.) 
 
Chapter 1  
 
1.   Most letters (18):  District of Columbia. 
     Fewest letters (4):  A three-way tie among Iowa, Utah, 
     and Ohio. 
     The frequency distribution is as follows: 
      
     Variable = Number of Letters in Name 
                                                       Relative 
     Value          Tally               Frequency      Frequency 
 
       4            111                     3            .058 
       5            111                     3            .058 
       6            11111                   5            .096 
       7            111111111               9            .173 
       8            11111111111            11            .212 
       9            111111                  6            .115 
      10            111                     3            .058 
      11            11111                   5            .096 
      12            111                     3            .058 
      13            111                     3            .058 
      14                                    0            .000 
      15                                    0            .000 
      16                                    0            .000 
      17                                    0            .000 
      18            1                       1            .019 
                                           __ 
                                           52 
      
     As you can see, this distribution is positively skewed, 
     because of the long "tail" to the right (if you rotate 
     this 90 degrees counter-clockwise), even though it 
     is fairly symmetric for values between 4 and 13.  The 
     District of Columbia (18 letters) is an "outlier". 
 
2a.  Variable = Number of Members of the U.S. House of 
     Representatives 
                                                       Relative 
Value          Tally                    Frequency      Frequency 
 
0-4            111111111111111111111        21           .404  
5-9            11111111111111111            17           .327 
10-14          111111                        6           .115 
15-19          11                            2           .038 
20-24          111                           3           .058 
25-29                                        0           .000 
30-34          11                            2           .038 
35-39                                        0           .000 
40-44                                        0           .000 
45-49                                        0           .000 
50-54          1                             1           .000 
                                            __ 
                                            52 
(Note:  It was necessary to group certain numbers together: 0-4, 
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5-9, etc., in order that the frequency distribution not look too 
"anemic".  This distribution is even more positively skewed than 
the distribution for Exercise #1.  Blame it on California, which 
is the outlier this time!) 
 
2b.  20  (Did you think it would be more than that or less than that?) 
 
3.   If you know the answer to this one, you should run for 
     President of the United States (or for God)! 
 
4.    Political  Tally      Frequency 
 Affiliation 
 
 Republican (R) 11111111111111111111          20 
 Democrat (D) 111111111111111111111111111111111     33 
 
This distribution has fewer(two)categories and is less skewed. 
 
5.  The only ones I can think of would be something like "Major  
    Religious Affiliation" or "Most common Socio-economic Status" 
    if we were to define those terms in such a way that there would be 
    four categories that are equally represented across the 52 "states".  
 
Chapter 2 
 
1.   53 (from 0 to 53).    
 
 
2.   Mean = 8.37; standard deviation = 9.49.      
 
3.   Range = 53.  One-half of 53 is 26.5; 53 divided by the square root 
     of 2(435) is 1.80; 9.49 is between 1.80 and 26.5.  We not be 
     right, but we're in the right "ballpark". 
 
4.   Skewness = 2.54; kurtosis = 10.95. 
     The skewness makes sense, because of the long tail to 
     the right "toward California".  The kurtosis seems 
     awfully high, but is undoubtedly due to both the peak 
     at the left and the long tail to the right.  (See the 
     frequency distribution for Exercise #2a, Chapter 1.)  
     If you did all of these calculations by hand you may 
     have noticed how much effect California had on the 
     skewness and the kurtosis, and how little effect all of 
     the other states had. 
 
5.   It would be like comparing apples and oranges.  For 
     example, if we know that the mean height of a 
     population of adult males is 69 inches, with a standard 
     deviation of 3 inches, and their mean weight is 170 
     pounds, with a standard deviation of 15 pounds, that's 
     all we know.  We can't say that they are heavier than 
     they are tall, even though the mean weight of 170 is a 
     bigger number than the mean height of 69, since weight 
     is measured in pounds and height is measured in inches.  
     Similarly, we can't use the two standard deviations of 
     3 inches and 15 pounds to argue that they are more 
     spread out in weight (pardon the pun) than they are in 
     height, for the same reason.  (There is actually 
     another statistic, called the coefficient of variation, 
     that does permit this sort of interpretation.) 
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Chapter 3 
 
1.   9 out of 52 = 17.3%. 
 
2.   Referring to the actual data in Table 1.4, two "states" have 
no representatives, seven states have one, and fourteen have ten 
or more, for a total of 23 out of 52, or 44.2%.  There could be a 
rounding problem here if you calculated the percentages 
separately for no representatives, one representative, ten 
representatives, etc. and then added those percentages. 
 
3.   20 out of 53 = 37.7%. 
 
4.   I get the following distribution: 
 
Location Tally     Frequency 
 
East  11111111111111111111111111  26 
 
West  11111111111111111111111111  26 
 
It is admittedly difficult to determine whether Illinois, Minnesota, 
Wisconsin, and a few others are east or west of the Mississippi, or how 
much of them is east and how much is west.  But the percentage is pretty 
close to 50%. 
 
5.  Likewise for north of the Mason-Dixon line, but it's also pretty 
close to 50%. 
 
Chapter 4 
 
1.   14/52 = .269 
 
2.   Without replacement:(14/52)(13/51) = .069 
     With replacement: (14/52)(14/52) = .072. 
 
3.   (14/52)(38/52) for "yes, no" + (38/52)(14/52) for "no, yes" = .393. 
 
4.   RRD: (20/52)(20/52)(32/52) = .091 
     RDR: (20/52)(32/52)(20/52) = .091 
     DRR: (32/52)(20/52)(20/52) = .091 
     RRR: (20/52)(20/52)(20/52) = .057 
  Total probability   = .330 
 
5.   This was a tough question.  If order of selection is 
     important in defining "different samples", the answer 
     is 52 x 51 x 50 x 49 = 6,497,400 (permutations).  If 
     order is not important in defining "different samples", 
     then there are "only" 52 x 51 x 50 x 49 divided by 1 x 
     2 x 3 x 4, i.e., 6,497,400 / 24, or 270,725 
     (combinations).  In either event I'll bet that's a lot 
     more than you thought it would be! 
 
Chapter 5 
 
3.   It would get "skinnier", because samples of five each 
     are more likely to represent the population than 
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     samples of two each, and therefore the statistics based 
     on the larger sample size are likely to vary less from 
     one another. 
 
4.   The general shape of the sampling distribution would be 
     similar, but it would be "fleshed out" better since 
     taking 100 samples rather than 50 samples would provide 
     a better fit to the theoretical sampling distribution 
     for that statistic. 
 
5.   The standard error is best interpreted as the typical 
     amount by which an obtained sample statistic is 
     expected to differ from the corresponding population 
     parameter. 
 
Chapter 6 
 
2.   The statistic based on the combined sample of 60 
     observations should be closest, since a sample of 60 
     takes a bigger "chunk" out of the population than a 
     sample of 30, but "by chance" it may not. 
 
4.   A .68 confidence interval would be narrower, since you 
     only "lay off" one standard error; a .95 confidence 
     interval for a sample of 60 would also be narrower, 
     since the standard error would be smaller, so there 
     would be a smaller quantity to "lay off" on either 
     side. 
 
Chapter 7 
 
2.   It's false (but not by much). 
 
3.   Whether or not a sample size of 30 was "appropriate" 
     depends entirely upon your alternative hypothesis, your 
     chosen significance level, and your desired power.  If 
     your alternative hypothesis postulated a "big effect" 
     (i.e., the parameter hypothesized in the alternative 
     hypothesis was quite different from the parameter 
     hypothesized in the null hypothesis), your chosen 
     significance level was "liberal" (e.g., .05 as opposed 
     to .01), and your desired power was not too high (.80, 
     say, as opposed to .95), then a sample size of 30 is 
     perfectly fine (and might even be too large!).  But if 
     you had very stringent specifications (e.g., an 
     alternative close to the null, the .01 level of 
     significance, and desired power of .95), 30 is much too 
     small.  (See Table 7.2.) 
 
4.   The possible permutations are RRR, RRD, RDR, DRR, RDD, DRD, 
     DDR, and DDD.  All have the same probability (.125) if the 
     null hypothesis of 50%R is true.  So no matter what 
     permutation you got you can't reject that hypothesis at any of 
     the traditional significance levels (and it is actually false,  
     so you just made a Type II error). 
 
5.   Not very likely for percentages that are close to 50 (for 
     example, the associated probabilities for the eight permutations 
     for a null hypothesis of 60%R are .216, .144, .144, .144, .096, 
     .096, .096, and .064), but for more extreme percentages the  
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     likelihood of rejection increases.  Note, however, that a null of 
     30%R would get rejected at the .05 level if you got RRR (associated 
     probability of .027 under the null)--an "almost Type I error" since 
     the true % of 37.7 is very close to that.    
 
Chapter 8 
 
3.   For a sample size of 200 (as opposed to 20), you would 
     be equally likely to make a Type I error, since you 
     specify that before you see the data, but you would be 
     less likely to make a Type II error, since you would 
     have greater power.  The relative risk and the odds 
     ratio would be unaffected since all of the frequencies 
     would be multiplied by ten, and things would cancel 
     out. 
 


