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Preface 
 
As the title suggests, this paper is about the number of "things" (n) that are 
appropriate for different aspects of quantitative research, especially in education 
and in nursing (the two fields I know well).  The topics range from "What size 
sample should you have?" to "How many statistical inferences should you make 
for a given study?   Each section (there are 15 of them) starts out with a 
question, an answer is provided, and then one or more reasons are given in 
defense of that answer.  Most of those answers and reasons are based upon the 
best that there is in the methodological research literature; I have provided two 
references for each section.  You might find some of them to be old, but old is not 
necessarily bad and is often very good. [I've also sneaked in some of my own 
personal opinions about the appropriate n for various situations.] 
 
I could have entitled this paper "N" rather than "n".  Statisticians generally prefer 
to use "N" for the number of things in an entire population and "n" for the number 
of things in a sample drawn from a population.  For the purpose of this paper I 
prefer "n" throughout. 
 
Enjoy! 
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     Section I   
 
Question:  What size sample should you have? 
 
Answer:  It depends 
 
Why? 
 
There are many matters to take into consideration.  For example, 
 
1.  how many observations you can afford to take with the resources you have. 
2.  whether you only want to summarize the data in hand or whether you want to 
make an inference from a sample to a population from which the sample was 
drawn. 
3.  how far off you can afford to be IF you want to make a sample-to-population  
inference. 
4.  the degree of homogeneity in the population from which the sample was 
drawn. 
5.  the reliability and validity of your measuring instrument(s). 
 
Let's take those matters one at a time. 
 
1.  Suppose you wanted to determine the relationship between height and weight  
for the population of third graders in your classroom.  [Yes, that is a perfectly 
defensible population.]  Even struggling school districts and financially-strapped 
school principals can probably afford to purchase a stadiometer/scale 
combination that is found in just about every doctor's office.  (There might already 
be one in the school nurse's office.)  If you have a class of, say, 20 students,  and 
you have a couple of hours to devote to the project, you can have each pupil 
stand on the scale, lower the rod at the top of the scale onto his(her) head, read 
off his(her) height and weight, and write them down on a piece of paper.  Do that 
for each pupil, make a scatter diagram for the data, and calculate the Pearson 
product-moment correlation coefficient, using one of the many formulas for it (see 
Section XI of this monograph) or have some sort of computer software do the 
plotting and the calculating for you.  There.  End of project.  Not very costly.  Also 
of limited interest to anyone other than yourself, those pupils, and perhaps their 
parents, but that's a separate matter from the determination of the sample size, 
which in this case is the size of the population itself. 
 
[An aside:  Do you think you should make two separate scatter diagrams: one for 
the boys (suppose there are 10 of them) and one for the girls (suppose there are 
10 of them also)?  Or would one that includes the data for both boys and girls 
suffice?  Think about that.] 
 
But if you wanted to determine that relationship for the entire school, or the entire 
school district, or the entire state, etc., unless you had a huge grant of some sort 
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the cost of carrying out the study would undoubtedly be beyond your financial 
capability, so you would likely resort to sampling (see next paragraph). 
 
 2.  Rather than using all of the pupils in your third-grade classroom you might 
want to take a random sample of your elementary school, determine the 
relationship between height and weight for that sample, and infer that the 
relationship for the entire school should be about the same, plus or minus some 
amount. The size of that sample would depend upon how accurate you would 
like that inference to be (see next paragraph).   
 
3.  The accuracy of a sample-to-population inference depends upon the so-called 
"margin of error", which in turn depends upon the sample size.  If you want to be 
very accurate, you must draw a very large sample.  If you don't mind being far 
off, a very small sample size would suffice, even as few as three people.   If you 
choose only one pupil you can't calculate a Pearson r.  If you choose two pupils 
the correlation must be +1, -1, or indeterminate.  [Do you know why?]  If you 
were interested in estimating some other quantity, say the mean height in a 
population, you might even be able to get away with n = 1 (see next paragraph). 
 
4.  If you happen to know that everyone in the population is exactly alike with 
respect to a particular characteristic, e.g., age in years at time of entering 
kindergarten, and that is a characteristic in which you are interested, it would not 
only be possible to estimate its mean with an n of 1 but it would be wasteful of 
resources to take any larger sample size than 1.  (There is a whole sub-specialty 
in psychological research called single case analysis where n is always equal to 
1, but various analyses are carried out within person.) 
 
5.  The more reliable the measuring instrument, the smaller the margin of error, 
all other things being equal.  And the more valid the measuring instrument, the 
more you are convinced that you're measuring the right quantity. 
 
For a discussion of the justification for sample size in general, see Hayat (in 
press).  For a discussion of "sample size" (number of occasions) for single case 
analysis, see Kratochwill and Levin (2010). 
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     Section II 
 
Question:  How many observations in a nested design are comparable to how 
many observations in a non-nested design? 
 
Answer:  This many:  mk/[1 + ρ(m-1)], where m is the number of observations 
within cluster, k is the number of clusters, and ρ is the within-cluster correlation. 
 
Why?  
 
It all has to do with the independence (or lack of same) of the observations.  In a 
nested design, e.g., one in which participants are "run" in clusters, the 
observations for participants within each cluster are likely to be more similar to 
one another than the observations for participants in different clusters.  Using the 
above formula for a simple case of two clusters with seven observations within 
each cluster and a within-cluster correlation (a measure of the amount of 
dependence among the observations) of .50, we get 9.33 (call it 9).  That is the 
"effective sample size" for the nested design, compared to a larger sample size 
of 2(7)= 14 if the observations for all of the participants had been independent in 
a non-nested design.  If you would carry out a traditional significance test or 
construct a traditional confidence interval for those data using the n of 14, you 
would be under-estimating the amount of sampling error and therefore be more 
likely to make a Type I error or have a confidence interval that is too tight.   
 
For discussions of the general problem and for further examples, see Killip, 
Mahfoud, and Pearce (2004) and Knapp (2007a). 
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     Section III 
 
Question:  How many treatment groups should you have in a true experiment 
(randomized controlled trial)? 
 
Answer:  Usually just two. 
 
Why? 
 
The focus of most true experiments is on the difference in the effectiveness of 
two treatments: one experimental, one control.  Some people argue that you 
should have at least three groups: one experimental group, another experimental 
group, and a placebo group (no treatment at all); or that you should have a 
factorial design for which the effects of two or more variables could be tested in a 
single study (see following paragraph).  Having three treatment conditions rather 
than two can get complicated in several respects.  First of all, three treatments 
are at least 1.5 times harder to manage than two treatments.  Secondly, the 
analysis is both more difficult and rather controversial.  [Do you have to conduct 
an over-all comparison and then one or more two-group comparisons?  If so, 
which groups do you compare against which other groups?  How do you interpret 
the results?  Do you have to correct for multiple comparisons?]  Third, what 
should the placebo group get(do) while the two experimental groups are 
receiving their respective treatments?  
 
The article by Green, Liu, and O'Sullivan (2002) nicely summarizes the problems 
entailed in using factorial designs, but see Freidlin, Korn, Gray, et al. (2008) for a 
counter-argument to theirs. 
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     Section IV 
 
Question:  How many points should a Likert-type attitude scale have? 
 
Answer:  It doesn't really matter. 
 
Why? 
 
Several researchers have studied this problem.  The consensus of their findings  
(see, for example, Matell & Jacoby, 1971) is that neither the reliability nor the 
validity of a measuring instrument is affected very much if you have two (the 
minimum), five (the usual; also the number that Rensis Likert used in his  original 
1932 article in the Archives of Psychology), or whatever number of categories for 
the scale.  That is actually counter-intuitive, because you would expect the 
greater the number of categories, the more sensitive the scale.  The more 
important consideration is the verbal equivalent associated with each of the 
points.  For example, is "sometimes" more often or less often than 
"occasionally"? 
 
It also doesn't seem to matter whether the number of scale points is odd or even.  
Some investigators like to use an odd number of scale points so that a 
respondent can make a neutral choice in the middle of the scale.  Others object 
to that, insisting that each respondent should make a choice on either the agree 
side or the disagree side, and not be permitted to "cop out". 
 
It is the analysis of the data for Likert-type scales that is the most controversial.  
Some people (like me) claim that you should not use means, standard 
deviations, and Pearson r's for such scales.  Others see nothing wrong in so 
doing.  The latter position is clearly the predominant one in both the education 
and the nursing literature.  But see Marcus-Roberts and Roberts (1987) for a 
convincing argument that the predominant position is wrong.
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     Section V 
 
Question:  How many items should you have on a cognitive test? 
 
Answer:  As many as practically feasible. 
 
Why? 
 
The reliability of a test is positively related to the number of items (the greater the 
number of items, the higher the reliability, all else being equal, especially the 
validity of the instrument).  And if your test is multiple-choice, that same claim 
also holds for the number of options per item (the greater the number of options, 
the higher the reliability).  Ebel (1969, 1972) explains both of these matters 
nicely.  Common sense, however, dictates that you can't have huge numbers of 
items or choices, because that would lead to fatigue, boredom, cheating, or 
resistance on the part of the test-takers. 
 
The standard error of measurement, which is a scale-bound indicator of the 
reliability of a measuring instrument for an individual person, can actually be 
approximated by using the formula .43 times the square root of n, where n is the 
number of items on the test.  (You can look it up, as Casey Stengel used to say.)  
It is then possible to establish a confidence interval around his(her) obtained 
score and get some approximate idea of what his(her) "true score" is.  The "true 
score" is what the person would have gotten if the test were perfectly reliable, 
i.e., what he(she) "deserved" to get.
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     Section VI 
 
Question:  How many equivalent forms should you have for a measuring 
instrument? 
 
Answer:  At least two (for "paper-and-pencil" tests).  
 
Why? 
 
If you want to determine the reliability of a measuring instrument, it is best to 
have more than one form so you can see if the instrument is consistent in the 
scores that it produces.  You could administer a single form on two separate 
occasions and compare the results, but participants might "parrot back" all or 
many of the same responses on the two occasions, leading to an over-estimate 
of its "real" reliability.  Most researchers don't administer two forms once each 
OR the same form twice.  They just administer one form once and determine the 
item-to-item internal consistency (usually by Cronbach's alpha), but that is more 
an indicator of an instrument's homogeneity or the coherence of its items than its 
reliability (see Kelley, 1942). 
 
The well-known Scholastic Aptitude Test (SAT) has more than two equivalent 
forms, mainly because the test has been developed to sample a large amount of 
content and because the developers are so concerned about cheating.  The 
various forms are subject to severe security precautions. 
 
If the instrument is a physical measuring instrument such as a stadiometer (for 
measuring height) there is no need for two or more equivalent forms (the 
stadiometer can't "parrot back" a height).  But you must have two or more forms, 
by definition, if you're carrying out a method-comparison study.  (See Bland & 
Altman, 2010 for several examples of that kind of study, which is "sort of" like 
reliability but the instruments are not equivalent or parallel, in the usual sense of 
those terms.) 
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     Section VII 
 
Question:  How many judges should you have for an inter-rater reliability study? 
 
Answer:  One or more 
 
Why? 
 
It depends upon whether you're interested in within-judge agreement or between-
judges agreement.  If the former (which is actually referred to as intra-rater 
reliability) you might only care about the consistency of ratings given by a 
particular judge, in which case he(she) would have to rate the same individuals 
on at least two occasions.  It is also necessary to specify whether it is the 
determination of the degree of absolute agreement which is of concern or 
whether the determination of the degree of relative agreement is sufficient.  (If 
there are four persons to be rated and the judge gives them ratings of 1,3,5, and 
7 at Time 1 and gives them ratings of 2,4,6, and 8, respectively, at Time 2, the 
absolute agreement is zero but the relative agreement is perfect.) 
 
If between-judges agreement is of primary concern, the seriousness of the rating 
situation should determine whether there are only two judges or more than two.  
It is usually more "fair" to determine the consensus of ratings made by several 
judges rather than just the average ratings for two judges, but it is a heck of a lot 
more work! 
 
Two sources for interesting discussions of the number of judges and how to 
determine their agreement are Stemler (2004) and LeBreton and Senter (2008).  
LeBreton and Senter use a 20-questions format (not unlike the format used in 
this monograph). 
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     Section VIII 
 
Question:  How many factors are interpretable in a factor analysis? 
 
Answer:  As many as there are eigenvalues greater than or equal to one for the 
correlation matrix. 
 
Why? 
 
If you have n variables, the "worst" (most heterogeneous solution) that can 
happen is that all of the eigenvalues of the correlation matrix are equal to one; 
i.e., each variable is its own factor.  In the opposite extreme, the "best" (most 
homogeneous solution) that can happen is that there is just one big eigenvalue 
equal to n and therefore indicative of a unidimensional construct.  (See Kaiser, 
1960 for his "little jiffy" approach.)  Although he has some concerns about the 
eigenvalues-greater-than-one "rule", Cliff (1988) provides a nice summary of its 
justification.   
 
[If you don't know what an eigenvalue (sometimes called a latent root or a 
characteristic root) is, you can find out by reading the two sources cited in the 
preceding paragraph or by looking it up in a multivariate statistics textbook.] 
 
The answer holds for both exploratory factor analysis and confirmatory factor 
analysis.  [I've never understood the need for confirmatory factor analysis.  Why 
bother to hypothesize how many factors there are and then find out how smart 
you are?  Why not just carry out an exploratory factor analysis and find out how 
many there are?] 
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     Section IX 
 
Question:  What is the minimum number of observations that will produce a 
unique mode for a variable? 
 
Answer: Three 
 
Why? 
 
Suppose you have one observation, a.  If so, you don't have a variable.  Suppose 
you have two observations, a and b. If they're both the same, you again don't 
have a variable.  If they're different, neither can be the mode.  Now suppose you 
have three observations.  If they're all the same, no variable.  If they're all 
different, no mode.  If two of them, say a and b, are the same but the third, c, is 
different from either of them, then a = b= the mode. 
 
The mode doesn't come up very often, but it should.  A manufacturer of men's 
overalls can only produce a small number of different sizes of overalls, and if 
optimization of profits is of primary concern (what else?) the modal size of men in 
general is what is important to know, so that more overalls of that size are 
produced than any other.  A more scientific example arises in the case of 
something like blood type.  Lacking specific information of the blood types of 
people in a given community, the American Red Cross would probably want to 
keep a greater supply of the modal blood type (which is O positive) than any 
other.   Note that for blood type neither the mean nor the median would be 
relevant (or able to be computed), because the measurement of blood type 
employs a nominal scale. 
 
There is an excellent Australian source on the internet called Statistics S1.1: 
Working with data, which is accessible free of charge and which is the finest 
source I've ever seen for understanding what a mode is and how it differs from a 
median and a mean.  (It is intended for school children and uses British currency 
and British spelling, but I hope that doesn't bother you.)  And if you ever get 
interested in a set of data that has two modes (bimodality), I wrote a very long 
article about that (Knapp, 2007b).
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     Section X 
 
Question:  How many categories should you have in a two-way contingency table 
("cross-tab")? 
 
Answer:  However many it takes (but be careful). 
 
Why? 
 
Two-way contingency tables are used to investigate the relationship between two 
nominal variables, such as sex and political affiliation, race and blood type, and 
the like.  For the sex-by-political affiliation example, sex requires two categories 
(male and female) and political affiliation requires at least two (Democrat and 
Republican) and as many as six or more (if you include Independent, Libertarian, 
Green, None, and others).  For race you might have the usual four (Caucasian, 
African-American, Hispanic, Asian-American) or even more, if you need to add 
Native-American and others.  Blood type requires eight (A positive, A negative, B 
positive, B negative, AB positive, AB negative, O positive, and O negative).  But if 
you have a relatively small sample you might have to "collapse" a, say, 4x8 table, 
into a smaller table, and depending upon how you do the collapsing you can get 
quite different answers for the relationship between the row variable and the 
column variable.  Collapsing of categories is all too common in quantitative 
research, and should only be used when absolutely necessary.  (See Cohen, 
1983, and Owen & Froman, 2005.) 
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     Section XI 
 
Question:  How many ways are there to calculate a Pearson product-moment 
correlation coefficient? 
 
Answer:  At least 14 
 
Why? 
 
In a classic article several years ago, my friend Joe Rodgers and his colleague 
Alan Nicewander (1988) showed there were 13 mathematically equivalent ways.  
I subsequently wrote to Joe and told him about a 14th way (Knapp, 1979).  There 
might be even more. 
 
It of course doesn't really matter which formula is used, as long as it's one of the 
14 and the calculations are carried out properly, by computer program, by hand, 
or whatever.  Far more important is whether a Pearson r is appropriate in the first 
place.  It is strictly an indicator of the direction and degree of LINEAR relationship 
between two variables.  Researchers should always plot the data before carrying 
out the calculation.  If the plot "looks" linear or if the data "pass" a test of linearity, 
fine.  If not, a data transformation is called for. 
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     Section XII 
 
Question:  How many significance tests should be carried out for baseline data in 
a true experiment (randomized controlled trial)? 
 
Answer:  None. 
 
Why? 
 
If the participants have been randomly assigned to treatment conditions, there is 
no need for testing baseline differences.  (See Senn, 1994, and Assmann, 
Pocock, Enos, & Kasten, 2000.)  The significance test or the confidence interval 
takes into account any differences that might have occurred by chance.   And 
there are at least two additional problems: (1) how do you determine what 
variables on which such tests should be performed?; and (2) what do you do if 
you find a statistically significant difference for a particular variable?   [Use it as a 
covariate?  That's bad science.  Covariates should be chosen based upon 
theoretical expectations and before seeing any data.] 
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     Section XIII 
 
Question:  How many independent (predictor) variables should you have in a 
multiple regression analysis? 
 
Answer:  Since it's "multiple" you need at least two, but don't have too many. 
 
Why? 
 
Some sources suggest a "rule of thumb" of a 10:1 ratio of number of independent 
variables to number of participants, but it all depends upon how good a "fit" you 
require.  If you choose to base the determination of the number of independent 
variables upon a power analysis, you could use Cohen's (1992) table "in 
reverse";  i.e., you specify the level of significance, the desired power, and your 
sample size; and then read off the number of independent variables that would 
give you the power you want. 
 
Knapp and Campbell-Heider (1989) provide a summary of the various guidelines 
that have been promulgated for the number of participants vs. the number of 
variables for a variety of multivariate analyses, including multiple regression 
analysis.
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     Section XIV 
 
Question:  How many degrees of freedom are there for a given statistic and its 
sampling distribution? 
 
Answer:  It's usually something minus one. 
 
Why? 
 
The concept of number of degrees of freedom (df) is probably the most 
mysterious concept in all of statistics.  Its definitions range all the way from "the 
number of unconstrained observations" to "something you need to know in order 
to use a table in the back of a statistics book".  Let's take a couple of examples: 
 
1.  For a sample mean, if you know what all of the observations are except for 
one, and you also know what the mean is, then that one observation must be 
such that the sum of it and the others is equal to n times the mean, where n is 
the total number of observations.  Therefore, the number of degrees of freedom 
associated with a sample mean is n-1.  And if you use a table of the t sampling 
distribution to construct a confidence interval for the unknown population mean 
you find the value of t for n-1 degrees of freedom that you should lay off on the 
high side and on the low side of the sample mean.  
 
2.  For a 2x2 contingency table ("cross-tab"), if you want to test the significance 
of the difference between two independent proportions or percentages, if you 
know one of the cell frequencies, and you know the two row (r) totals and the two 
column (c) totals, the other three cell frequencies are not free to vary, so there is 
only one degree of freedom associated with that table, calculated by multiplying 
(r-1) by (c-1), which in this case = (2-1)x(2-1) = 1X 1 =1.  You then calculate the 
value of chi-square by using the traditional formula and refer that value to a table 
of the chi-square sampling distribution for df=1 to find out if your result is or is not 
statistically significant with respect to your chosen alpha level. 
 
Statistical consultants occasionally tell clients that "you lost one degree of 
freedom for this" or "you lost two degrees of freedom for that", which usually 
conveys nothing to the clients, since the clients don't know they have any to start 
with! 
 
For all you ever need to know (and then some) about degrees of freedom, see 
the article by Helen Walker (1940...yes, 1940), but see also Ron Dotsch's 
Degrees of Freedom Tutorial (accessible free of charge on the internet) if you are 
particularly interested in the concept as it applies to the analysis of variance and 
the associated F tests. 
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     Section XV 
 
Question:  How many statistical inferences should you make for a given study? 
 
Answer: No more than one.   
 
Why? 
 
If you have data for an entire population (no matter what its size) or if you have 
data for a "convenience", non-random sample, no statistical inferences are 
warranted.  If you do have data for a random sample and you want to make an 
inference from the sample to the population, one hypothesis test or one 
confidence interval (but not both, please) is fine.  If you have a complicated study 
involving several groups and/or several variables, and if you carry out more than 
one statistical inference, it is usually incumbent upon you to make some sort of 
statistical "correction" (e.g., Bonferroni) or your error probabilities are greater 
than you assume a priori.  Best to avoid the problem entirely by concentrating on 
a single parameter and its sample estimate. 
 
If you are familiar with the research literature in whatever your particular 
discipline might be, you might find some of the claims in the previous paragraph 
to be unreasonable.  Just about every research report is loaded with more than 
one p-value and/or more than one confidence interval, isn't it, no matter whether 
for a population, a convenience sample, or a random sample?  Yes, that's true, 
but it doesn't make it right. 
 
For opposing views on the matter of adjusting the alpha level when making more 
than one significance test, see the article by O'Keefe (2003) and the response by 
Hewes (2003).  Neither of them argues for having no more than one statistical 
inference per study, but I do. 
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