2

4

6

Clinical Trials vs. Potential Outcomes

1

MILO SCHIELD

Augsburg College Member: International Statistical Institute US Rep: International Statistical Literacy Project Director, W. M. Keck Statistical Literacy Project

July 29, 2012 Slides at <u>www.StatLit.org/pdf/2012Schield-ASA6up.pdf</u>

Main Claim

Big claim in the intro statistics course (Stat 101): Association is not causation

What are some other explanations for associations?

- 1. Confounding. Schield (2006).
- 2. Coincidence. Schield (2012) eCOTS webinar.
- 3. Potential Outcomes (This talk)

Weed-Killer Treatment

Response	Treatment	Control	%
1. Doomed	Die	/ Die	P1
2. Intended Result	Die	Live	P2
3. Opposite Result	Live	Die	P3
4. Immune	Live	Live	P4

P1 + P2 + P3 + P4 = 100%

Observables. Treatment: Die (P1+P2) or Live (P3+P4) Control: Die (P1+P3) or Live (P2+P4)

Four observables (equations) and four unknowns. But not independent. Thus, **potential outcomes**.

Potential Outcomes:	5	
Causal Heterogeneity		

Treatment	Control	%
Die	Die	P1
Die	Live	P2
Live	Die	P3
Live	Live	P4
	Treatment Die Die Live Live	TreatmentControlDieDieLiveLiveLiveDieLiveLive

P1 + P2 + P3 + P4 = 100%

The proportions in the control group are determined by the nature of (proportions in) the treatment group.

Random assignment controls for confounders – but not for causally-related heterogeneity within the subjects.

Potential Outcomes: Treatment vs. Control

Response	Treatment	Control	%
1. Doomed	Die	Die	P1
2. Intended Result	Die	Live	P2
3. Opposite Result	Live	Die	P3
4. Immune	Live	Live	P4

Association: Relative Risk of death Relative Risk = RR = (P1+P2) / (P1+P3)

Simplest case: No adverse effects so P3 = 0. Relative Risk: RR = (P1+P2)/P1.

10

Results are Not Statistically Significant

Two kinds of explanations in a clinical trial:

- 1) No real difference in the averages for the two groups
- 2) Difference is real but is not visible because it is:
- · confused with (masked by) chance in a small sample
- offset by confounders introduced after randomization
- · diluted/masked by causal heterogeneity

How important is this causal heterogeneity?

Causal Heterogeneity is a Big Deal

11

Drug companies spend billions per year on clinical trials. Many – if not most – give results that are not statisticallysignificant, or they are rejected because of adverse effects.

What if many of these rejected treatments

- * were extremely effective for a population subgroup?
- * had minimal adverse effects for a subgroup?

Could it be that our model of statistical significance and the design of clinical trials is largely responsible for the high cost of new drugs in the US?

- * study all sources of influence on a statistic
- * show how potential outcomes affect statistical-significance
- * show importance of potential outcomes in clinical trials

2012	13
References	
Schield, M. (2006). Presenting Confounding and Standardization Graphically. STATS Magazine American Statistical Association. Fall 2006. pp Copy at www.StatLit.org/pdf/2006SchieldSTA	e, . 14-18. <u>TS.pdf</u> .
Schield, M. (2012) e-COTS: Big Data Generates Coincidences. See <u>www.causeweb.org/ecots/pc</u>	Beguiling osters/19/
Weisberg, H. I. (2010). Bias and Causation: Mode Judgment for Valid Comparisons. John Wiley &	els and & Sons.
Weisberg, Herbert I. (2011). Statistics and Clinica Past, Present and Future. ASA Proceedings of t on Statistical Education. [CD-ROM], 1547 – 15 www.StatLit.org/pdf/2011Weisberg-JSM.pdf.	al Trials: he Section 561.

Statistics	1 Ciami	ficar		14
Jidlistica	u sign		166	
for Ke	lative	Kisks		
$PT_{rest} = \Lambda / (\Lambda + B)$	GOOD OUTCOME			
$P_{A} = A/(A+D).$	TREATED	YES	No	ALL
PControl = C/(C+D)	YES	Α	в	A+B
RR = PTreat/PControl	NO	С	D	C+D
$LnRR = Log_e(RR)$	ALL	A+C	B+D	N
Var[Ln(RR)] = [(B/A)/(A+B)] + [(D/C)/(C+D)]				
Std. Error = Sqrt{ $Var[Ln(RR)]$ }. (A+B) = (C+D) = N/2				
Confidence Level = 90% to get two 5% tails.				
Zcutoff = NORMINV(0.95, 0, 1) = 1.64				
90% Margin of Error = Zcutoff * Std. Error				
Limits 90% LnRR CI: LnRR ± 90% Margin_of_Error				
Limits 90% RR CI: [Exp (LnRRLow), Exp(LnRRHigh)]				

weisberg's Conclusion

15

"Rather than narrowly focusing on whether or not the treatment "works" in general, we should ask a better question.

For whom (if anyone) is the treatment beneficial and *for whom* is it harmful?

What individual and circumstantial characteristics are conducive to a positive (or negative) response?

To answer such questions will require a more flexible approach to design and analysis of RCTs."

Weisberg (2011)