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Abstract: Coincidence may be the most common 
manifestation of chance in everyday life.  Chance-
based coincidences are a necessary result of the Law 
of Very Large Numbers: the unlikely is expected (the 
“impossible” becomes almost certain) given enough 
tries.  This paper examines: runs in flipped coins, one 
and two-dimensional clusters of rare events and the 
birthday problem using Excel spreadsheets.  This 
paper has three goals: 1) to show that unlikely coin-
cidences are much more common than expected, 2) to 
show the ambiguity in the question “What is the 
chance of that?” and 3) to show that as a rule-of 
thumb a run with one chance in N is generally found 
in a string of N tries.  This rule of thumb is simple, 
memorable and useful since it is within 10% of the 
expected value for large N  Conjecture: if the chance 
of run of length k is pk, then that length run is ex-
pected in N tries when N = (1/p)(k+1). 
Keywords: statistical literacy, Excel, visual display 

1. STATISTICAL LITERACY 
No matter how one defines statistical literacy, it must 
include randomness or chance.  The two most com-
mon references to chance in the everyday media in-
volve the margin of error and coincidences.   

Coincidences are newsworthy.  Raymond and Schield 
(2008) analyzed 273 statistics-based news stories.  Of 
these, 10% included the phrase “unlikely due to 
chance” whereas 5% mentioned "confidence level" 
and only 3% mentioned "statistically significant".    

The goal of this paper is to investigate runs and clus-
ters, and show why coincidences are expected.  

2. COINCIDENCES 
Coincidences are event-conjunctions that are unlikely 
and memorable.  Life is filled with unlikely events.  
Recall the first name of the last stranger you talked 
to.   Unlikely? Yes.   Memorable?  Not likely. 

Now recall an unlikely conjunction that was memo-
rable for you.  Calling someone just as they were 
about to call you (or vice versa).  Meeting someone 
you know in a distant or unlikely place.  Finding 
something lost long ago, just before you were going 
to buy a replacement.  Having a dream about some-
thing before it happened.    

John Allen Paulos, author of Innumeracy stated that 
the most incredible coincidence of all might be the 
absence of all coincidence.  Auditors sometimes use 
the lack of coincidence as evidence of fraud.   

“Coincidences fascinate us; they seem to compel a 
search for their significance.”  Paulos (1989).  “My 
favorite is this little known fact: In Psalm 46 of the 
King James Bible, published in the year that Shake-
speare turned 46, the 46th word is "shake" and the 
46th word from the end is "spear." (More remarkable 
than this coincidence is that someone should have 
noted this!)”  Myers (2002).  

“One famous coincidence is that John Adams and 
Thomas Jefferson, two men who shaped the Declara-
tion of Independence, both died on July 4, 1826, the 
fiftieth anniversary of the signing of that historic 
document.”  (Neimark, 2004) 

Coincidences that are extremely unlikely due to 
chance are argued to be due to something else.  So 
how likely are coincidences?   

The short answer: “Coincidences are more likely than 
you ever imagined.”  The longer answer: “Coinci-
dences are expected given enough tries.”  The goal of 
this paper is to illustrate these two points.   

Coincidences are a matter of a statistical law: the law 
of Very-Large Numbers: the “impossible” is almost 
certain given enough tries. As described by Diaconis 
and Mostellar (1989), ''With a large enough sample, 
any outrageous thing is apt to happen.”  

To illustrate the omnipresence of coincidences, this 
paper begins with runs in flipping a fair coin, exam-
ines patterns or clusters of rare events in one and 
two-dimensional spaces and reviews the classic 
“birthday” problem.  Excel spreadsheets generate the 
data in this paper.   

3. COINCIDENCE: RUNS IN FLIPING COINS 
Consider seeing a run in flipping a fair coin.  A “run” 
identifies a group activity as in a “run” on a bank 
where depositors withdraw their money in large 
numbers or when a group of people compete to be 
first in a 10-K “run”.  In statistics, a run involves 
repetitions of a rare outcome.  For coins, a run is se-
ries of heads (or tails). 

Runs in flipping coins are a bit more complex than 
expected.  See Appendix A for technical details.  

Figure 1 shows the results of flipping 16 rows of 100 
coins each. It shows if the result is a head (a red 
color), tabulates the length of the longest run in each 
row, and then show the maximum length of all the 
runs in that spreadsheet. 
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Figure 1: Runs of Heads in 1,600 cells 

The longest run for each row is shown at the left in 
column A.  The longest run of all is shown at the top 
left corner.    

Notice the run of ten heads circled in the first row of 
Figure 1.  What is the chance of that?   

A run of 10 heads seems very unlikely.  Yet runs of 
at least ten heads occur more often than not when the 
data if refreshed (press F9).  How is this possible?   

The short answer: the question is ambiguous.  “What 
is the chance of that?” has two interpretations: 

1. What is the chance that on the next 10 tries, 
heads will result in exactly the cells circled?  

2. What is the chance that ten adjacent cells will all 
have heads -- somewhere in the 1,600 cells? 

The answer to the first question is one chance in 
1,024: P = (1/2)10.  The answer to the second depends 
on what length longest run is expected in N tries.   

The expected length of the longest run is not deter-
mined by the binomial distribution.  But if there are T 
trials (where T = 1/P), of 10 flips each, then one run 
is expected: on average.  If P is one chance in 1024, 

then in 1,024 trials of 10 coins each, one set of 10 
heads is expected.  It can be shown that in this case 
the chance of 10 or more heads is at least 50% (is 
more likely than not).  See Appendix B and 
Appendix C.  When Np is an integer, Lord (2010) 
showed that the mean is also the median and the 
mode. 

But the Binomial distribution does not give any in-
formation about the distribution of the longest run in 
a string of size N.  But knowing that this coincidence 
(a run of k heads) is expected in T sets of size k is a 
useful first step that matches with our intuitions. 

Consider a simpler case of a run of 3 heads: one 
chance in eight.  A run of three heads is expected in T 
trials of 3 coins each where T = 8 since T*P = 1.  
This would involve flipping 24 coins.   

These eight sets of 3 coins each can be mapped onto 
a series of 10 coin flips as shown in Figure 2.   

In general, T trials of K coins each can be mapped 
into N flips when N = T + (k-1) and T = 2k.  For runs 
of length k, consider N = (1/p)k + (k-1).   
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Figure 2: Compressing 24 flips (8 sets of 3 each) into 10 flips in a row 

 

When the event is a run of two heads (chance of one 
in four) with N = 5, the chance of that run or longer is 
greater than 50% and the mean length is 1.94. 

When the event is a run of three heads (one chance in 
eight) with N = 10, the chance of that run or longer is 
greater than 50% and the mean length is 2.80.  

Appendix E thru Appendix J support the claim that 
the longest run generally found in series of N flips of 
a fair coin is given by Log(N) base 2 for N >> k. 

Table 1 shows the number of flips generally needed 
given the length of the longest run.  

Table 1 Number of flips needed by longest run length 
Length N  Length N 

Two 4  Seven 128 
Three 8  Eight 256 
Four 16  Nine 512 
Five 32  Ten 1,024 
Six 64  Eleven 2,048 

With this background, we can return to the horizontal 
runs in Figure 1.  In a row of 100 cells, we generally 
find a maximum run length of six or seven.  In this 
figure, there are 16 rows.  A simple way to handle 
this situation is to treat the 16 rows as being linked, 
so there is a single string of 1,600 tries.  In that case, 
we generally find a longest run length of 10. 

This is what is observed in Figure 1.   

Alternatively, when the run of interest is one chance 
in N, then one needs N cells so that one such run is 
generally found.  This simple rule of thumb is intui-
tive, memorable and visually convincing.   

If the chance of success on the next try is p, the 
chance of a run of k or more successes is generally 
more likely than not in N tries where N = (1/p)k.  

Note the relentless use of “generally.”  This is a rule 
of thumb, not a mathematical theorem.  .  

This run of 10 in Figure 1 is unexpected for the non-
statistician who doesn’t see the ambiguity in the 
question and who fails to see the large number of 
potential groups of size 10 within these 1,600 cells.  
This run of 10 heads in more than a thousand tries is 
not unexpected by anyone who is statistically-literate.  

Recall again the ambiguity in the question: How 
likely (unlikely) is that?  This ambiguity explains 
why coincidences can be both rare and common.  
Appendix D examines the distribution of run lengths. 

The real key to these very long runs is overlap.  To 
expect a run of 10 heads, it would take 1,024 tries of 
10 coins each.  Instead this run of 10 heads is 
generally found in a row with 1,024 tries.  Overlap 
within a row gives a factor of 10 reduction.   

Coins are easy to understand, but powers of two are 
not.  Consider events having one chance in 10.   



5/28/2012 Coincidence in Runs and Clusters MAA 

2012Schield-MAA4A.doc Page 4  

Figure 3: Cluster of Rare Events (one chance in 10) in a Row 

4. STRAIGHT-LINE CLUSTERS 
Clusters describe a group of rare events that are con-
nected.  In this case, a cluster occurs when the rare 
events are connected by touching horizontally. 

This can be simulated in Excel by using a modified 
version of the runs spreadsheet where the chance of a 
rare event is one chance in 10.  This is simulated us-
ing the Excel function RandBetween (0,9).  Getting a 
nine is considered a rare event:  one chance in ten. 

In this spreadsheet each cell has a one-digit value 
between zero and nine. Those values involving a nine 
are highlighted in red.  Note that the rare events (the 
red cells) are much less common – as expected.  First 
consider straight-line clusters that are horizontal.   

Now consider the spreadsheet results shown in Figure 
3.  The number in the left-hand column (column A) is 
the maximum run length in that row.  The number in 
the lower-left and upper-left corners is the maximum 
run length for all the rows.  Notice that the maximum 
horizontal run-length is one for some of the rows, 
two for a few and three for a very few.  

Now consider the three-event cluster circled in the 
second row.  What is the chance of that? 

An unwitting student might say: one chance in one-
thousand since each rare event has one chance in ten.  
This is a correct answer – in a sense.  As before, this 
question is ambiguous.  You can see this by refresh-
ing the data (press F9) and seeing that having at least 
one three-event cluster is common.  You are getting a 
thousand-year flood every year.  

In fact you may be getting a four-event cluster (one 
chance in ten thousand).  How is this possible? 

As in the case of the coins, the real problem is the 
ambiguity of the question.  So what is the probability 
of the three-event cluster circled in the first row? 

1. What is the chance that three rare events will be 
adjacent – in the specified location: the circled 
cells?  One chance in 1,000: P = 10-3. 

2. What is the chance that three rare events will be 
adjacent -- somewhere in the 1,600 cells?   
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Figure 4: Cluster of Rare Events (one chance in 10) in a Row or Column 

 
 
The answer to the second question depends on how 
many opportunities there are to get three rare events 
in adjacent cells.  Suppose there were 1,000 such 
opportunities.  

What is the size of the largest cluster one would gen-
erally find?  Since 103 = 1,000, one generally finds at 
least one three-event cluster.  We generally find a 
thousand-year flood every year somewhere on earth 
given a thousand independently floodable places.  
This event (or higher) is more likely than not. 

Table 2 Distribution of Row Clusters (N=1,000) 
RUN Probability: P Chance: P k = N*P 
One One in 10 (1/10)^1 100 
Two One in 100 (1/10)^2 10 
Three One in 1,000 (1/10)^3 One 
Four One in 10,000 (1/10)^4 1/10 

Clusters of rare events are much more common than 
expected provided one is aware of the size of the re-
gion in which such clusters could appear. Unfortu-
nately, the resulting cluster is seen while the region in 
which it could have appeared in unseen or unnoticed.   

Now consider straight-line clusters in a single column 
(vertical).    This would have exactly the same chance 
as getting a cluster in these rows.  Including both 
rows and columns doubles the number of possible 
ways to get a straight-line cluster of adjacent rare-
event cells in a given area.  See Figure 4.  

A straight-line cluster of three rare events (p=1/10 so 
P=1/1,000) horizontally or vertically is generally 
found in some 500 cells.   

Here the key is overlap – but in a different sense.  A 
given cell can form a coincidence by row – or by 
column.  This is what gives the factor of two.  

Now suppose we allowed clusters whenever two cells 
touch.  This would allow diagonal connections.  For a 
given cell there are two horizontally (H) adjacent 
cells and two vertically (V) adjacent cells, but there 
are four diagonally (D) adjacent cells.  Allowing a 
straight line cluster diagonally quadruples the number 
of ways to get a straight-line cluster of adjacent cells.  

Table 3 Trials Needed (p=1/10) by Run Length 
Length N (H) N (H or V) N (H, V or D) 
Two 100 50 13 

Three 1,000 500 125 
Four 10,000 5,000 1,250 
Five 100,000 50,000 12,500 
Six 1million 500,000 125,000 

Seven 10 million 5 million 1.25 million 

The more ways there are to connect things, the physi-
cal fewer trials required for a logical conjunction.   
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Figure 5: Distribution of “grains of rice” 

 

5. RICE CLUSTERS IN 2 DIMENSIONS 
Suppose that we did not require that the rare events 
be in a straight line.  This should increase the possi-
ble ways to generate a cluster and decrease the num-
ber of trials needed to get a cluster of a given size.  

In this spreadsheet each cell has a randomly-assigned 
one-digit value between zero and nine.  Only those 
values involving a nine are highlighted in red.  The 
chance a given cell will be red is one chance in ten. 

There does not appear to be any formula to generate 
the number of ways that k tiles can touch each other 
starting with a given cell where touching includes 
points as well as edges.  Simple overlap compression 
doesn’t capture the ways cells can form patterns. 
Appendix K gives an upper estimate of this number. 

We don’t have any idea of how far over the true val-
ue the upper-limit is.  Eliminating the last tile in the 
branching gives 8x[7(k-3)] combinations.  Table 4 
gives these estimates of the number of combinations 
possible with k tiles as a function of k. 

Table 4 Estimated # of Combinations for k Tiles 

k 8*[7(k-3)]  k 8*[7(k-3)]
2 1  7 19,208
3 8  8 134,456
4 56  9 941,192
5 392  10 6,588,344
6 2,744  11 46,118,408

How many ways are there to get a cluster of nine 
events in a spreadsheet with 3,000 cells?  First elimi-
nate a band of 9 cells around a horizontal and vertical 
side to compensate for edge effects.  If there are one 
million ways to form a cluster of nine events, then 
there are more than one billion (109) ways to get a 
cluster of nine cells touching with 3,000 cells.  This 
means at least one cluster of nine or more touching 
cells (P=10-9) is generally found.  .Students enjoy 
working with the “grains of rice” since it generates 
unusual patterns.  They quickly realize that they are 
getting extremely-unlikely coincidences every time.  
It’s like a billion-year flood every year.  See Figure 5.   
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6. COINCIDENCE: BIRTHDAY PROBLEM 
The classic example of coincidence is the “birthday 
problem.”   The chance of a match in birthdays 
(month and day) seems remote: 1 chance in 365. 

Note the ambiguity in “match”. Here a match means 
a shared birthday (same month and day) for two 
members of a group.  It does not mean an exact 
match with a pre-specified birthday (month and day).  

Richard von Mises proved that a shared match was 
expected in a group of at least 28 people.  See 
Schield and Burnham (2008).  Von Mises noted the 
sheer number of connections and the fact that the 
matched subject were specified after the fact (ex 
post) – not in advance (ex ante).   Since the matched 
subjects were not specified in advance, the probabil-
ity of a match was the probability that any two sub-
jects would have matching birth dates.  This probabil-
ity depends on the chance of a given birth data 
(1/365) and the number of possible pairs or subjects.   

The number of pairs (the number of permutations) is 
easily calculated.  For a group of N subjects, the first 
subject has N-1 connections; the second has N-2 ad-
ditional connections, etc.  So the total number of or-
der-dependent connections is given by: 

Eq.  1  # permutations N things 2 at a time: N(N-1) 

To eliminate order (to calculate the number of com-
binations), we must divide by the two places to put 
the second choice.  

Eq.  2: # combinations N things 2 at a time: N(N-1)/2 

For N = 28, the number of connection is 378: 27*14.   

Table 5 shows the number of connections for various 
size groups (N).  

Table 5 Combinations of Two in Groups of Size N  
N Connections  N Connections 
2 1  26 325 
3 3  27 351 
5 10  28 378 

10 45  30 435 
25 300  50 1,225 

An event with probability P is expected in 1/P tries.  
An event with probability 1/365 is expected in 365 
tries.  Note that the probability of a match is 1/365 – 
not (1/365)2.   This is because a shared “match” is 
different than the possibility of an exact match with a 
pre-specified month and day.   

Lesser (1999) noted that the exact solution where the 
events are not independent is quite close to the ap-
proximate solution where the events are independent.  
Henceforth, the trials will be treated as independent.   

Consider an exact match.  It takes at least 253 ran-
dom picks to have at least a 50% chance of a match 
with a pre-specified date. 1- [(364/365)^253] = 0.51  

The expected value is not necessarily what happens 
most of the time; it need not be the most common 
outcome (the mode).  It is what is expected on aver-
age – in the long run.  The chance of two heads in 
two flips of a fair coin is 1 in 4.  In four flips of a pair 
of coins, we expect one pair of heads 

As mentioned before, an expectation can also be ex-
pressed as a probability statement. An event with 
probability P is more likely than not to occur at least 
once in 1/P tries. (Appendix B)   So a matching 
birthday is expected (at least one or more is more 
likely than not) in a group of at least 28 people.  

Although the birthday problem is an unexpected co-
incidence, students may have a hard time seeing all 
the possible connections that are responsible for an 
expected match in a group of only 28 people.  Con-
sider the following Excel spreadsheet: 

In Figure 6, 28 people are arranged around a table 
with seven on each side.  A match between individu-
als on adjacent sides is indicated by a cell in the cen-
ter colored red along with a number indicating the 
quadrant involved.   

Figure 6: Birthday Problem: Match in 1st Quadrant 

 

The table is divided into four quadrants.  The upper-
right quadrant is designated as quadrant 1.  The low-
er-right quadrant is designated as quadrant 2.  The 
lower-left quadrant is designated as quadrant 3.  The 
upper-left quadrant is designated as quadrant 4.  

A match involving people in the upper-right quadrant 
(top and right) is shown by the number “1” in a red-
filled cell.  There are 49 possible pairs in quadrant 1 
between the seven on top and the seven on the right.   

In Figure 7, there is a match between a person on the 
right and a person on the bottom.  This match in qua-
drant 2 is indicated by the number two in the red-
filled cell.  There are 49 possible pairs in this second 
quadrant involving the seven people on the right with 
the seven people on the bottom. 
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Figure 7: Birthday Problem: Match in 2nd Quadrant 

 

In Figure 8, there is a match between a person on the 
left and a person on the bottom.  This match in quad-
rant 3 is indicated by the number three in the red-
filled cell.  There are 49 possible pairs in this third 
quadrant involving the seven people on the left with 
the seven people on the bottom. 

Figure 8: Birthday Problem: Match in 3rd Quadrant 

 

In Figure 9, there is a match between a person on the 
left and a person on the top.  This match in quadrant 
4 is indicated by the number four in the red-filled 
cell.  There are 49 possible pairs in this fourth quad-
rant involving the seven people on the left with the 
seven people on the top. 

Figure 9: Birthday Problem: Match in 4th Quadrant 

 

At this point we have highlighted 196 possible pair-
ings (4 * 49) between these 28 people.  But to make a 
match more likely than not, we need at least 360 pos-
sible pairings. Now consider pairings between indi-
viduals on the top and bottom: 

Figure 10 illustrates a match between non-adjacent 
sides: specifically between top (N) and bottom (S).  

Figure 10: Birthday Problem: Match of top & bottom 

 

A match between two non-adjacent sides is indicated 
by green-filled cells.  The letter indicates the position 
of the matching cell.  The cell on the bottom (South) 
marked “N” matches with a cell on the top (North) 
marked “S”.   Again, we have 49 possible pairs be-
tween top and bottom. 

Figure 11 shows matches between individuals on 
opposite sides: 

Figure 11: Birthday Problem: Match of left and right 

 

The cell on the left (West) marked “E” matches with 
a cell on the right (East) marked “W”.   Again, we 
have 49 possible pairs between top and bottom. 

At this point we have 294 possible pairings: 6 * 49.  
But we need more to reach our goal.  Now consider 
matches within a given side: 

Figure 12: Birthday Problem: Match of right & right 

 

In Figure 12, the cell on the right (East) marked “E” 
matches with another cell on the right (East) marked 
“E”.   Here we have only 21 possible pairings: 
6+5+4+3+2+1.  

When we include the 84 internal pairing with all four 
sides we have 378 possible pairs. 
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Table 6 Connections in a Group of 28 People  
Pairs Location of Connection 
196 Quadrants 1 – 4.  49 pairs per quadrant 
  98 Top to bottom (49) and side-to-side (49) 
  84 Within each of four sides (21 each) 
378 TOTAL 

Since this total exceeds 365, a birthday match (a prior 
probability of one in 365) is expected in a group of 28 
people.   

Once again, we don’t see all the possibilities.  We 
focus on the observed outcome and ask “What is the 
chance of that?”  By now you should recognize this 
question as being ambiguous? 

It can mean, “What is the chance of specifying ex-
actly two previously identified people in a group as 
having a matching birthday?” This is the one chance 
in 365.  There is only one way for this match to oc-
cur.  

It can mean “What is the chance of at least one birth-
day match among any of the people in a group?”  In a 
group of 28 people, the answer is “more likely than 
not”: greater than 50%.  

The actual case is even more complex.  There can be 
multiple matches.  Here are some examples: 

Figure 13: Birthday Problem: Multiple matches 

 

It is false to say that having a [single] match [having 
exactly what is expected] is more likely than not 
when N = 1/P.  See Appendix C.  The proper state-
ment is that at least one match is more likely than 
not.  See also Schield (2005).  

7. COINCIDENCE AND SAMPLING ERROR 
At this point it seems like coincidence and sampling 
error are at opposite ends of a spectrum.  Coincidence 
requires large groups (coincidences increase as the 
group get bigger); sampling error requires small 
groups (sampling error increases as the group gets 
smaller. 

But there is a connection.  Sampling error is a distri-
bution.  All too often we focus on the 95% margin of 
error.  But the sampling distribution can be used to 
talk about the chance of extremes (coincidences) as 

well as to talk about the chance of a given margin of 
error.  Consider the case of a cancer cluster.  

8. CANCER CLUSTER 
In their great book, The Numbers Game, authors 
Blastland and Dilnot tell the story of Wishaw: a small 
village in England.  On bonfire night in 2003, some-
one tore down the cell-phone tower in their town.  No 
one confessed; no one was ever charged with the 
crime.  It may have been related to the fact that 
“among the 20 households within 500 yards of the 
tower, there had been nine cases of cancer.” 

What is the chance of that?  What is the chance that 
20 families would have nine cancer victims?  It 
seems like this is too unlikely to be due to chance.  If 
so, this is no coincidence; there must be a “causal 
explanation” where the quotes indicate a special case 
in which the causes are readily observable.   

But how unlikely is this event?  To answer this, we 
need to sort out some messy issues.  

First, what constitutes being a cancer victim?  This 
could range from being a terminal cancer patient to 
having a benign skin cancer.  Second, how many 
people are there in these 20 families?  20 people or a 
hundred?  Third, how many of these cancer victims 
were diagnosed with cancer prior to the arrival of the 
cell-phone tower?  Fourth, over what length of time 
are these cancers tabulated: a year or a decade?  Fifth, 
how many have a cancer that is closely associated 
with a well-known cause: smoking and lung cancer, 
sun exposure and skin-cancer, etc.  

But, to make a point, assume the cancers were mod-
erate to serious, that there are 50 people in these fam-
ilies, that all the cancers were diagnosed after the 
tower was installed and none of the cancers had a 
known cause.  Furthermore, assume there is one 
chance in ten of being a cancer victim for adults.   

There are two ways to approach this problem.  One 
uses the sampling distribution; the other using a com-
binatorial approach.   

Consider using the sampling distribution.  Suppose 
that the observed rate (20%) is twice the background 
rate (10%).  How likely is a rate of at least 20% in 
samples of size 50 when sampling from a population 
with a rate of 10%?  The 95% margin of error is 
given by 1.96*Sqrt(0.1*0.9/50) = 0.0832 = 8.32%.   

If Z = 2.4, then the upper-end of the confidence in-
terval exceeds 20%.  The probability of this is eight 
chances in 1,000.  So in 122 groups of size 50, one 
would expect to find double the background rate.    

This coincidence is all but expected – somewhere in a 
country the size of England.   
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9. BIG DATA 
It might appear that as the size of the dataset in-
creases, the chance of a coincidence should decrease.  
Consider flipping two coins.  The chance of a match 
on the first pair of flips is one in two.  The more 
times this pair of coins is flipped, the less likely that 
the resulting series will match. 

Eq.  3: P(match of length k|2 coins) = p^k = (1/2)^k 

But what if the big data involved an increase in the 
number of coins being flipped?  Now coincidence 
should increase.  The chance of a match on the 1st try 
among trials involving n different coins is given by: 

Eq.  4: P(match on 1st try) = 1 – [P(no_match)]^n 
P(match on 1st try) = 1 – [1 - P(match)]^n 

Inserting the results for a match of length k gives: 

Eq.  5: P(match length k | n coins) = 1 – (1-p^k)^n 

As k increases, the chance of a match decreases, but 
as n increases, the chance of a match increases.  

Figure 14: Runs: Chance of matching run somewhere 
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p = 0.5.   k = 1, 2, 4, 6, 8, 10 and 12: Left-to-Right
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To see the relationship between p, k and n, solve for 
P(match of length k given n coins) = ½.   

Eq.  6: ½ = (1-p^k)^n 

As noted by Alex Schield (private communication), 
this is readily reduced by taking logs which gives 
(where N = p^-k): 

Eq.  7: Log(½) = n * log(1-1/N) 

Taking the first term of the Maclaurin series for 
LN(1-x) and using LN(1/2) = -.693 gives: 

Eq.  8:  0.693    n / N or n  0.7*N 

This approximation is nicely memorable.  Given a 
run with probability 1/N, finding a matching run  in 
‘n’ other series is more likely than not if n > N. 

This derivation does not say anything about the size 
of a longest run of length k in K flips of n coins.  

10. CAUSATION 
When one can show that an unexpected event is ex-
pected assuming pure chance, does this prove it is a 
statistical coincidence?  Certainly not. 

One cannot prove an observed event is pure coinci-
dence after assuming randomness any more than one 
can prove the null hypothesis is true after assuming 
that it is true.   

So who has the burden of proof after an event has 
been shown to be expected assuming pure chance?   

 One group says that those who assert causation 
have the burden.  This test is more like criminal 
law where the presumption is coincidence and 
strong arguments (beyond reasonable doubt) 
must be mustered to overcome that presumption.  

 The other group says that neither group has the 
burden of proof.  The test is more like civil law 
where the preponderance of evidence must be 
used.  

 A third group says it depends on the context.  If 
we are doing pure science and want to minimize 
Type 1 error, then the criminal law approach is 
best.  If we need to make a decision and the 
stakes are high (life vs. death), then a civil law 
approach is best.  

Sorting this out will be left for later.  

11. EXPLANATIONS 
It seems that we underestimate the chance of coinci-
dences.  Why is this?  Are we necessarily error-
prone?  Do we have minds that cannot handle these 
mathematically-sophisticated events?   

What are some explanations for under-estimating the 
chance of a coincidence?   

1. Ex Ante vs. Ex Post:  When someone asks, 
“What is the chance of that?” are they asking ex 
ante (before this happened) or ex post (after this 
happened)?  Consider shooting targets with a 
bulls-eye:  Ex ante is posting the target first and 
then shooting.  Ex-post is shooting first and then 
centering the target on the center of your shoot-
ing (much easier).   

2. Change in context (here vs. somewhere):  
When someone points out a coincidence and asks 
“What is the chance of this?” the ‘this” can mean 
this outcome as just this location (here) or it can 
mean this outcome at any location (somewhere).  

3. Combinations vs. permutations:  Consider 
flipping two coins where there was a head on the 
first try and a tail on the second. . Asking “what 
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is the chance of that?” is ambiguous.  If one 
means “exactly this” you are talking about per-
mutations: order matters.  If one means one head 
on either the first or second try, you are talking 
about combinations: order does not matter.   

4. Physical vs. logical.  Consider flipping three 
coins.  A set of three heads is “expected” in flip-
ping eight sets of three: 24 flips.  But with over-
lap into a single row, these eight sets can be 
mapped to 10 physical flips: 123, 234, 345, etc.  
For a run of size k heads, the k*2k individual 
flips are mapped into 2k + (k-1) flips: roughly a 
k-fold reduction.  Generalizing, for a run of size 
k with a probability p of a success per individual 
event, the k*(1/p)k logical trials are mapped on to 
a (1/p) k + (k-1) ordered tries in a row.  For a trip-
let with one chance in 10 per try, one would ex-
pect one triplet in a thousand sets of three to 
form a coincidence.  These 3,000 tries can be 
mapped into 1,002 physical trials: roughly a 
three-fold reduction.   The longer the run, the 
greater the reduction.  

5. Psychological explanations.  ''We are hard-
wired to overreact to coincidences,'' says Persi 
Diaconis. (Selkin, 2002) 

6. Big Data:  As the supply of data increases, 
the number of beguiling coincidences also in-
creases.  This increased number may over-whelm 
even the most skeptical observers.  As Professor 
Robbins (Harvard) noted, “It's well known that if 
you take a lot of random noise, you can find 
chance patterns in it, and the Net makes it easier 
to collect random noise.” 

7. Not-very-relevant question.  Consider a 
front-page story in the New York Times on a 
"1in 17 trillion" long shot, speaking of a woman 
who won the New Jersey lottery twice. Diaconis 
and Mosteller (1989) took a radically different 
approach when they said “The 1 in 17 trillion 
number is the correct answer to a not-very-
relevant question.  If you buy one ticket for ex-
actly two New Jersey state lotteries, this is the 
chance both would be winners.”  They noted, 
this very specific situation is seldom what has 
happened.  In this case, the woman had bought 
multiple tickets repeatedly.  

Diaconis and Mosteller summed it up this way: 
“Once we set aside coincidences having apparent 
causes, four principles account for large numbers of 
remaining coincidences: hidden cause; psychology, 
including memory and perception; multiplicity of 
endpoints, including the counting of “close” or nearly 
alike events as if they were identical; and the law of 

truly large numbers, which says that when enormous 
numbers of events and people and their interactions 
cumulate over time, almost any outrageous event is 
bound to occur. These sources account for much of 
the force of synchronicity.” 

This paper argues that even when the law of very 
large numbers is known, the large number may still 
be unseen – even when visible.  Consider this visual 
explanation.  

12. VISUAL EXPLANATIONS 
Explanations of coincidence can be quite sophisti-
cated.   They may satisfy some but not others.  Con-
sider a visual approach to see how what is seen – but 
ignored (unseen) – matters in explaining coinci-
dences.  

Review the discussion on how a run of three heads is 
expected in 8 sets of three coins each – and how it is 
“expected” in a series of 10 coin flips.   

Suppose we flip 10 coins?  What is the chance that 
we will get a run of three heads?    

The chance of getting a run of three heads some-
where in 10 flips is the same as the chance that flip-
ping eight triplets separately will give a triplet of all 
heads.   

Compressing 24 into 10 may not seem like much. 

Figure 15: Compressing 64 (16 sets of 4) into 19 

 

Consider a run of four heads.  What is the chance of 
getting four heads in the next four flips of a fair coin?  
This is one chance in 16: 24.   If there were 16 sets of 
four coins each and we flipped them all one time, we 
would expect one of the 16 sets to have all heads.  
That involves flipping 64 coins since 64 = 4*16. 

If instead of specifying exactly where or when the 
run is to occur, we allow the run to occur anywhere 
in a series of flips, how few coins do we have to flip?   
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Figure 15 shows this visually. Consider the pattern 
that is emerging.  The chance of getting k heads on 
the next k flips of a fair coin is (1/2)k.   Suppose we 
had N set with k coins each where N = 2k.  If we 
flipped these N sets of k coins each, we would expect 
one of those N sets to have all heads.   

But these N sets of k coins each can be mapped or 
compressed into N + (k-2) adjacent cells.  So what 
started as N*k flips (k*2k) has now been reduced to 
N+k-2 cells (2k + k – 2).    

For runs, the ratio of uncompressed to compressed is 
approximately k:  (N*k) / (N+k-2) ~ k(N/N) = k.  

13. EVOLUTION AND SNOWFLAKES 
Opponents of evolution often note that the chance of 
intelligent life is so small as to be impossible.  Yet 
the same can be said of any given person (unique 
DNA or fingerprints) and any given snowflake.  Once 
again the ambiguity in “the chance of this” appears.   

14. CONCLUSION 
What is unseen is often more important than what is 
seen.  This is certainly true with coincidences.  When 
we see an unlikely outcome that is memorable, we 
fail to see the many ways to generate the event in 
question and mistakenly conclude the coincidence 
cannot be chance since it seems so unlikely.   

Be careful about statements involving chance gram-
mar – they are often ambiguous.  Is the event a pre-
specified event (which is extremely unlikely) or is the 
event an after-the-fact event (which is generally 
much more likely)?   

As Freeman Dyson noted, “The paradoxical feature 
of the laws of probability is that they make unlikely 
events happen unexpectedly often.”  (Oehlert, 2007).  

Myers (2002) concluded, “That a particular specified 
event or coincidence will occur is very unlikely. That 
some astonishing unspecified events will occur is 
certain. That is why remarkable coincidences are 
noted in hindsight, not predicted with foresight." 

A more precise summary would be, “That a particular 
pre-specified event or coincidence will occur at a pre-
specified place and time is very unlikely. That some 
astonishing events noted after having occurred will 
occur somewhere sometime is certain. That is why 
remarkable coincidences are noted in hindsight, not 
predicted with foresight." 

On the other hand, is it mere coincidence that in 1989 
John Allen Paulos published Innumeracy and Di-
aconis and Mosteller published their seminal paper 
on coincidence in JASA?  Is it mere coincidence that 
the last two digits of the publication year (89) match 

the number of letters in each of the author’s names: 
eight for Fredrick and Diaconis, nine for John Allen?  
Is it mere coincidence that the sum of 8 and 9 just 
happens to equal the number of letters in the name of 
Fredrick Mosteller? Is it mere coincidence that 8 = 23 
while 9 is 32?  

15. RECOMMENDATIONS 
To be statistically literate, one must be very aware of 
the omnipresence of chance.  The most common oc-
currence of chance in our everyday lives is through 
coincidences: unlikely events that are memorable.   

We all need training to see what is unseen: to see the 
many possible ways that an observed outcome could 
have been produced.  Only then can we appreciate 
the power of chance to explain coincidences.  

More work is needed to demonstrate coincidences 
involving chance and determinism, and to decide 
whether a coincidence is really due to something 
other than chance.   
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Appendix A: Technical Details 
First, are the runs just of one outcome (heads only) or 
do they include runs of both outcomes (heads and 
tails)?  When the outcomes are binary, this issue is 
unique to coins.  Normally, the event in question is so 
unlikely (chance of death due to lightning, a tornado, 
a hurricane, a tsunami, an earthquake, etc.) that the 
complement binary event cannot be viewed as a co-
incidence.  But with coins, heads and tails are equally 
likely, so the chance of a run of four heads is just as 
likely as the chance of a run of four tails.  

Whether to include both can be argued both ways.   

 PRO: Coincidences involve unlikely events.  The 
chance of getting four heads in four flips of a 
coin is just as likely (as unlikely) as getting four 
tails.  They are both memorable coincidences 
and so both should be included. 

 CON: With binary outcomes, normally one event 
is rare: much more unlikely than the other.  The 
only run that is memorable involves the unlikely 
event.  To include both outcomes in the case of 
coins may render the results inapplicable to other 
cases.  

In this paper, runs of just one kind are counted since 
only the rarer of the two outcomes is typically in-
volved in a coincidence.  

 Second, in N flips of a fair coin is a run of N-1 heads 
possible when a tail occurs between two of the 
heads?  If the beginning and end terminate a run, then 
the answer is “no”.  Consider three flips of a fair 
coin.  The only way to get a run of two heads is HHT 
or THH.  But suppose we allow “wrap-around” so 
that the only way to terminate a run of heads is a tail.  
Now the sequence HTH can be said to involve a run 
of two heads.   

Whether to allow “wrap-around” is an important is-
sue when looking for the longest run.  Consider the 
sequence: HHTHHH.  Without wrap-around, the 
longest run is four heads.  With wrap-around, the 
longest run is six heads.  Allowing “wrap-around” 
increases the frequency of long runs.   

Allowing “wrap-around” can be seen by arranging 
the coin outcomes in a circle instead of in a straight 
line.  The only down-side of “wrap-around” occurs 
when all the outcomes are the same.  In this case, the 
length of the run is unbounded. 

Since our goal is to show that coincidences are much 
more frequent than expected, we show the results 
with wrap-around.  But since students don’t naturally 
think this way, we show the results without wrap-
around as well.  
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Appendix B: Binomial Chance of No Successes 

When the number of trials (N) equals 1/p where p is 
the probability of the desired outcome, then it can be 
shown that the probability of getting no desired out-
come is always less than (1/e) but approaches (1/e) as 
N approaches infinity (P approaches zero). .   

The chance of zero successes is given by (1-p)N 
where N = 1/p.  So P(k=0) = (1-p) (1/p).   Here is 
P(k=0) graphically using Excel.  

Figure 16: P(k=0) vs. P when N=1/P 
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Figure 17: P(k=0) vs P on log scale when N=1/p 
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Note that as p approaches zero, P(k=0) approaches 
0.36788.  Note that 1/e equals 0.367888.  It appears 
that as p approach zero, P(k=0) = 1/e. 

Recall that Euler’s number (e) is defined as (1+1/N)N 
as N approaches infinity.  So, 1/e equals (1+1/N)-N.   

Dr. Robert Raymond (personal communication) 
pointed out that when the expected value ( = Np) is 
fixed and N increases, the binomial distribution is 
approximated by the Poisson.  When  = 1 and k = 0, 
the Poisson is e-1.   

This convergence is noted in the Wikipedia article on 
Euler’s constant: “e (mathematical constant)”   

Appendix C: Binomial Chance of One Success 

When N = 1/p, the chance of exactly one success is 
given by (p/N)(1-p)N-1 *[nC1].  Since [nC1] = N, 
P(k=1) = (1-p) (1/p-1). = (1-1/N)(N-1). The following 
figures show P(k=0) and P(k=1) when N=1/p for 
various ranges of N.  Notice the asymptotic approach 
in each figure.  

Figure 18: P(k=0) and P(k=1): N < 100 
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Figure 19: P(k=0) and P(k=1): 100<N < 10,000 
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The asymptotic approach to e-1 seems all but certain.  
The differences between P(k-0) = (1-1/N)N, P(k=1) = 
(1-1/N) (N-1) and e-1 = Lim (1+1/N)-N seem to vanish 
as N approaches infinity.  

This limit can be proven by using the Poisson ap-
proximation to the binomial.  When  = 1 and k = 1, 
the Poisson is e-1.  

Thus when Np = 1, P(k=0) and P(k=1) both approach  
e-1 as n increases.  But P(k=0) approaches from below 
while P(k=1) approaches from above, so P(k=0) is 
never the modal value.  
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Appendix D: Distribution of Runs Given a Start 

The phrase “distribution of runs” has three distinct 
meanings.  (1) Distribution of run lengths given a 
specified starting position.  (2) Distribution of the 
lengths of the longest run in N tries – in a string of 
length N. (3) Distribution of all runs in N tries – a 
string of length N -- where multiple runs are possible. 

This section deals with coins using the first interpre-
tation.   Students readily agree when the starting posi-
tion is fixed that longer runs are less likely than 
shorter runs; the longer the run, the less likely it is.    

Given runs starting at a fixed position, consider the 
distribution of run lengths for a run of heads.  This 
presumes there is a head in the first position and the 
random element is the distribution of heads in the 
following positions. 

A run of length one has one chance in two since the 
first throw after the first head has a 50% chance of 
being a tail: P(T1 | H0) .  A run of length two has one 
chance in four: P(H1, T2 | H0).  

For a run of heads, the theoretical distribution for a 
run of length k starting in a given position is 1 chance 
in 2k:   P(Run length = k | H0) = 2-k.  

Here is an actual distribution of run lengths in flip-
ping a fair coin 100 times: 

Figure 20: Distribution of Run Lengths 

 

It is tempting to say that the chance of a run of length 
one is 50%.  But this abbreviated “chance-of” syntax 
is ambiguous as to the context. Review the three in-
terpretations of that abbreviated phrase.  

It is proper to say that the chance of a run of length 
one is 50% for a given starting point.  A run of length 
zero is ignored as a contradiction in terms. .   

The expected length of these runs is two as N ap-
proaches infinity.  [It is 1.99 for N = 10.]  The sum of 
k times 1/(2^k) is ½ plus 2/4 + 3/8 + 4/16 + 5/32 + 
6/64, etc. This sum approaches two as shown in 
Table 7.  

Table 7 Expected value of run length: k 
k 2^k P(k):1/2^k K*(1/2^k) Sum
1 2 0.5 0.5 0.5
2 4 0.25 0.5 1.0
3 8 0.125 0.375 1.38
4 16 0.0625 0.25 1.63
5 32 0.03125 0.15625 1.78
6 64 0.015625 0.09375 1.88
7 128 0.007813 0.05469 1.93
8 256 0.003906 0.03125 1.96
9 512 0.001953 0.01758 1.979

10 1,024 0.000977 0.009766 1.988
11 2,048 0.000488 0.005371 1.994
12 4,096 0.000244 0.002930 1.997
13 8,192 0.000122 0.001587 1.998
14 16,384 6.1E-05 0.000854 1.9990
15 32,768 3.05E-05 0.000458 1.9995
16 65,536 1.53E-05 0.000244 1.9997

Since run lengths of one are expected half the time, 
run lengths of two or longer are expected half the 
time and the median is 1.5.   A run of length zero is 
ignored as meaningless.  The mode is one.   

This phrase, half the time, is easily misunderstood 
when the context is ambiguous.  This does not mean 
that if we pick a particular cell, the chance that cell 
will mark the start of a run of length k is ½^k.  In 
percent grammar this confuses: 

1. 50% of the tries result in a run of length one. 

2. 50% of the runs that start in a given position are 
of length one.  

Of these two, the second is what is intended here.  
Only 25% of the tries at a given location result in 
runs of length one; 50% result in non-runs and 25% 
result in runs of length two or more.  

Can this kind of exercise be done quickly in class 
with student-generated data and without any technol-
ogy?  One way is to ask each student to convert each 
of the last four digits of their ID number to even or 
odd and to represent even by zero and odd by one.  
Place a one (head) before each of these four digit 
numbers and look at the distribution of run lengths   

Note that this monotonically-decreasing distribution 
of runs by size is not the distribution of the longest 
run by size.  The mean length for this distribution of 
runs stabilizes as the length of the series of flips in-
creases.  The mean length for the distribution of the 
longest run increases as the length of the series of 
flips increases.   

This is where students get confused.  They confuse 
the expected run length (two) with the expected 
length of the longest run.   
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Appendix E:  Distribution of Longest Runs: #1 
Consider the empirical distribution of the longest run 
length for various numbers of flips.  In each case, the 
empirical data is obtained from 200 trials.   

Figure 21: Distribution of Longest Run (N=16) 
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Note that 24 = 16.   Log (16) base 2 = 4.  A run of 
four heads has a chance of one in 16 for runs starting 
at a given place.  A run of four heads is expected 
when there are 16 tries – which are possible with N = 
16 when wrapping the tail at the end around to the 
beginning. 

Figure 22: Distribution of Longest Run (N=32) 
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Expected value: 5.265

 

Note that 25 = 32.   Log (32) base 2 = 5. .  A run of 5 
heads has a chance of one in 32 starting at a given 
place.  A run of 5 heads is expected when there are 
32 tries – which are possible with N = 32 when 
wrapping the tail at the end around to the beginning. 

Figure 23: Distribution of Longest Run (N=64) 
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Distribution of Longest Run: N=64

Expected value: 6.665

 

Note that 26 = 64.   Log(64) base 2 = 6.  A run of 6 
heads has a chance of one in 64 starting at a given 

place.  A run of 6 heads is expected when there are 
64 tries – which are possible with N = 64 when 
wrapping the tail at the end around to the beginning.  

Figure 24: Distribution of Longest Run (N=100) 
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Note that 27 = 128.   Log (127) base 2 = 7.  A run of 7 
heads has a chance of one in 128 starting at a given 
place.  A run of 8 heads is expected when there are 
128 tries – which are possible with N = 128 when 
wrapping the tail at the end around to the beginning. 

Long runs are unexpected – a statistical coincidence.  
But students quickly realize that the greater the 
number of tries, the larger the longest expected run 
becomes.  

The preceding discussion assumes that one wraps the 
data at the end around to the beginning so that N flips 
gives N different sequences for runs of any size up N. 

Students may find it difficult to imagine this wrap-
around.  An alternative approach would be to add on 
an additional log(N) base 2 cells so that runs of the 
expected length have the full opportunity to be 
expressed.   
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Appendix F: Distribution of Longest Run: #2A 
The theoretical distribution of the longest run in N 
flips of a fair coin for 2  N 12 was obtained using a 
“sledgehammer”: generating all possible combina-
tions and observing the longest run (k) for each 
unique combination.  

Table 8 Longest Runs of Heads: 2  N  7 

 N = Number of tries (length  of string) 

k 2 3 4 5 6 7 

0 1 1 1 1 1 1 
1 2 4 7 12 20 33 
2 1 2 5 11 23 47 
3   1 2 5 12 27 
4     1 2 5 12 
5       1 2 5 
6         1 2 
7           1 

Total 4 8 16 32 64 128 
Mode 1 1 1 1 2 2 

Median 1 1 1.5 2 2 2 

Mean 1.00 1.38 1.69 1.94 2.16 2.34

Table 9 Longest Runs of Heads: 8  N  12 

 N: Number of tries (length  of string) 

k 8 9 10 11 12 

0 1 1 1 1 1
1 54 88 143 232 376
2 94 185 360 694 1328
3 59 127 269 563 1167
4 28 63 139 303 653
5 12 28 64 143 315
6 5 12 28 64 144
7 2 5 12 28 64
8 1 2 5 12 28
9   1 2 5 12
10     1 2 5
11       1 2

12         1

Total 256 512 1024 2048 4096
Mode 2 2 2 2 2 

Median 2 2 3 3 3 

Mean 2.51 2.66 2.80 2.92 3.04

When flipping a coin, N = 6 is required to expect a 
longest run length of two (N = 5 for the median) 
while N = 12 is required to expect a longest run 
length of three (N=11 for the median). In this range, 
the expected value is close to k when N = 2k + (k-1).   

See www.StatLit.org/Excel/2012Schield-Runs.xls 

Appendix G: Distribution of Longest Run: #2B 
Given the count distribution in Appendix F, one can 
readily obtain the probability of k being at least as 
big as the mean value.  

Table 10 Probability k is at least the mean: 2  N  7 

N = Number of tries (length of string)

k 2 3 4 5 6 7 

0 0.25 0.13 0.06 0.03 0.02 0.01
1 0.5 0.5 0.44 0.38 0.31 0.26
2 0.25 0.25 0.31 0.34 0.36 0.37
3   0.13 0.13 0.16 0.19 0.21
4     0.06 0.06 0.08 0.09
5       0.03 0.03 0.04
6         0.02 0.02
7           0.01

Total 1.00 1.00 1.00 1.00 1.00 1.00

Mode 1 1 1 1 2 2 
Median 1 1 1.5 2 2 2 

Mean 1 1.38 1.69 1.94 2.16 2.34
P(k>=Exp) 0.75 0.38 0.5 0.59 0.31 0.37

Table 11 Probability k is at least mean: 8  N  12 

N = Number of tries (length of string) 

k 8 9 10 11 12 

0 0 0 0 0 0
1 0.21 0.17 0.14 0.11 0.09
2 0.37 0.36 0.35 0.34 0.32
3 0.23 0.25 0.26 0.27 0.28
4 0.11 0.12 0.14 0.15 0.16
5 0.05 0.05 0.06 0.07 0.08
6 0.02 0.02 0.03 0.03 0.04
7 0.01 0.01 0.01 0.01 0.02
8 0 0 0 0.01 0.01

Total 1.00 1.00 1.00 1.00 1.00

Mode 2 2 2 2 2 
Median 2 2 3 3 3 

Mean 2.51 2.66 2.80 2.92 3.04
P(k>=Exp) 0.42 0.46 0.51 0.55 0.30

Consider runs of length 2 so N = 5.  Note that the 
chance that k is at least 2 is 59%.   Now consider runs 
of length 3 so N = 10.  The chance that the length of 
the longest run is at least three is 51%. 

In both cases, when N = 1/P, the chance that the 
longest run is at least the expected value is greater 
than 50%: is more likely than not. 

But any conjectures based on this limited range of N 
need to be tested for a much greater range of N.   
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Appendix H: Distribution of Longest Run: #3A 
Schilling (1990) uses a neat recursive approach.  Let 
An(k) be the number of combinations with runs  k 
where k is fixed and n varies.  Consider k=3 in col-
umn E. For n = 0, 1, 2 and 3, An(3) = (1/p)n. “For n > 
3, each favorable sequence begins with either T, HT, 
HHT, or HHHT and is followed by a string having no 
more than three consecutive heads. Thus for n > 3,  

An(k=3) = An-1(3) + An-2(3) + An-3(3) + An-4(3)”  

To be unique, all An-1(k) sequences can only be pre-
ceded by T; all An-2(k) can only be preceded by HT, 
etc. for the k+1 terms.  

Seeing why this is true is not obvious.  To be true this 
procedure must generate sequences that are exclusive 
and exhaustive.  Consider the specific sequences for 
k = 3 and n = 4. 

A3(3):  TTT, TTH, THT, THH, HHH, HTH, HHT 
and HHH.  A2(3):  TT, TH, HT, HH.  A1(3): T, H. 

Putting T before the A3(3) sequences gives TTTT, 
TTTH, TTHT, TTHH, THHH, THTH, THHT and 
THHH.   Putting HT before the A2(3) sequences 
gives HTTT, HTTH, HTHT and HTHH.  Putting 
HHT before the A1(3) sequences gives HHTT and 
HHTH.  Putting HHHT before the A0(3) ‘sequence’  
gives HHHT.   

Note that all these four-character patterns are unique.  
Duplicates are impossible in this system.  These four-
character sequences are exhaustive: they include all 
the 16 possibilities except HHHH.   

In this case, this procedure generated 15 four-
character sequences that are exclusive and exhaus-
tive.  

Table 12 Cumulative Vertical Series: All runs  k  
          A     B     C      D       E        F         G         H  

1 
 

Length of the Longest run of heads 
in N tries 

2 N 0 1 2 3 4 5 6
3 0 1 1 1 1 1 1 1
4 1 1 2 2 2 2 2 2
5 2 1 3 4 4 4 4 4
6 3 1 5 7 8 8 8 8
7 4 1 8 13 15 16 16 16
8 5 1 13 24 29 31 32 32
9 6 1 21 44 56 61 63 64
10 7 1 34 81 108 120 125 127

In a given column, the first number below the bold 
(in the n = k+1 row) is the sum of all the bolded num-
bers above.  The formula is copied downward.   Thus,  

A1(0) B4: Sum(B3:B3),  A2(0) B5: Sum(B4:B4), etc.  
A2(1) C5: Sum(C3:C4),  A3(1) C6: Sum(C4:C5), etc.  
A3(2) D6: Sum(D3:D5),  A5(2) D7: Sum(D4:D6), etc.  
A4(3) E7:  Sum(E3:E6), A4(3) E8: Sum(E4: E7), etc.  

To get the non-cumulative distribution taken horizon-
tally for k  N, subtract adjacent cumulative counts 
within a given row Table 12 to get Table 13.  

Table 13  Horizontal differences for a given n  
  A     B    C    D      E      F       G     H      I    J    K 

k = Length of longest run of Heads in N tries
n Sum 0 1 2 3 4 5 6 7 8

0 1 1 0 0 0 0 0 0 0 0
1 2 1 1 0 0 0 0 0 0 0
2 4 1 2 1 0 0 0 0 0 0
3 8 1 4 2 1 0 0 0 0 0
4 16 1 7 5 2 1 0 0 0 0
5 32 1 12 11 5 2 1 0 0 0
6 64 1 20 23 12 5 2 1 0 0
7 128 1 33 47 27 12 5 2 1 0
8 256 1 54 94 59 28 12 5 2 1

The total row count, (1/p)n, and the count in each cell 
are sufficient to generate row probabilities.  See 
www.StatLit.org/Excel/2012Schield-Recursion.xls. 

Note: Excel cannot handle these formulas for n 
greater than 1,023. 

To see how this differs from simple Combinatorics, 
consider the row for n = 3.  Here are the 8 combina-
tions:  k=0 (1): TTT. k=1 (4): HTT, THT, TTH, 
HTH.  k=2 (2): HHT, THH.  k=3 (1): HHH.  Every-
thing seems OK. 

Now consider the row for n = 4.  Here are the 16 
combinations: k=0 (1): TTTT.  k=1 (7): HTTT, 
THTT, TTHT, TTTH, HTHT, HTTH, THTH.  k=2 
(5): HHTT, THHT, TTHH, HHTH, HTHH.  k=3 (2): 
HHHT, THHH.  k=4 (1): HHHH 

At this point it should be obvious that the formulas 
for combinations and permutations do not address 
this kind of problem.   The distribution of the longest 
runs is a very different matter.   
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Appendix I: Distribution of Longest Run: #3B 
Based on the Schilling recursion approach described 
in Appendix H, the following results are obtained.  
Schilling’s approach agrees with the “sledgehammer” 
approach used in the previous appendices.  More im-
portantly, it allows a simpler extension for larger N. 
Table 14 gives summary statistics as a function of N. 

Table 14 Longest Run of Heads: 1  N  1,023 
N Mode Median Mean
2 1 1 1.00
4 1 1 1.69
5 1 2 1.94
6 2 2 2.16
8 2 2 2.51
9 2 2 2.66

10 2 3 2.80
11 2 3 2.92
12 2 3 3.04
16 3 3 3.43
24 3 4 3.98
25 3 4 4.04
32 4 4 4.38
44 4 5 4.82
49 4 5 4.98
50 4 5 5.00
64 5 5 5.35
89 5 6 5.82

101 5 6 6.00
128 6 6 6.34
203 6 7 6.99
204 6 7 7.00
256 7 7 7.32
356 7 8 7.79
414 7 8 8.003
512 8 8 8.30
711 8 9 8.76
844 8 9 8.999
845 8 9 9.000
989 9 9 9.22

1,023 9 9 9.26

In each case, the median advances before the mean 
which advances before the mode as n increases. 

Fitting a linear regression to the mean of the longest 
run as a function of the log of N base two gives  
Mean = -0.40 + 0.9647*Log2(N), R^2 of 99.981%.  

Fitting a linear regression to the median of the long-
est run as a function of the log of N base two gives 
Median= -0.5548 + 0.9846*Log2(N): R^2 of 99.38%.  

These values are close to Log2(N) which supports 
using Log2(N) as a rule of thumb on the upper limit 
of the mean or median length of the longest run.  

Appendix J: Distribution of Longest Runs: 3C 
Based on the Schilling recursion approach described 
in Appendix H, the distribution of the longest runs of 
heads is shown for selected values of N in the follow-
ing tables. Table 15 shows the summary statistics for 
those values of N that correspond to N = (1/2)k.  
[N=1,023 is shown in place of 1,024] 

Table 15 Longest Run of Heads: 1  N  1,023 
K N Mode Median Mean 
3 8 2 2 2.51 
4 16 3 3 3.43 
5 32 4 4 4.38 
6 64 5 5 5.35 
7 128 6 6 6.34 
8 256 7 7 7.32 
9 512 8 8 8.30 

10 1,023 9 9 9.26 

In each case, the expected value (the mean) is less 
than k by up to 20%.  But, this percentage difference 
decreases as N increases.  For k = 10, the difference 
is less than 8%.  

Table 16 shows the summary statistics for those val-
ues of N where the mean value of the distribution 
equals or just exceeds the integer values of k.  

Table 16 Longest Run of Heads: 1  N  1,023 

N Mode Median Mean Log2(N)

12 2 3 3.04 3.58 
25 3 4 4.04 4.64 
50 4 5 5.00 5.64 

101 5 6 6.00 6.66 
204 6 7 7.00 7.67 
414 7 8 8.00 8.69 
845 8 9 9.00 9.72 

The value of N required to give integer values for the 
mean lies between (1/p)^k and (1/p)^(k+1) and is less 
than  (1/p)^(k+0.75) in this range.  

For this case and range, a run of k is expected when 
N = (1/p)^(k+1) where “expected” identifies both the 
mean and the median.   It is tempting to conjecture 
that this is generally true for other values of p and 
larger values of N.   But without an analytic form for 
N as a function of p and k, this conjecture is simply a 
conjecture.  

Schilling (2012) showed that for nq >> 1, the ex-
pected length of the longest run was given by  

Exp(k) = Log(nq) base (1/p) 

For coins, this reduces to log(n/2) base 2.  This ap-
pears to be a lower limit for all values of n.  
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Appendix K: Combinations of k Tiles - Theory 
Three theoretical approaches are presented here.  One 
gives a lower limit for just straight-line clusters, a 
second gives a lower limit using poly-ominoes; the 
third gives an upper limit.   

Consider just straight-line clusters starting with a 
given tile.  There are eight ways to add a second tile 
to a first.  There are two ways to add a tile to any of 
the existing patterns while maintaining a straight line.  
Etc.  Thus the number of combinations relative to a 
given starting point is given by 8*2(k-2).  

A second approach drops the straight-lines require-
ment but does not allow touching on the points. The 
number of combinations of k tiles in two dimensions 
excluding diagonal touching has been estimated by 
c*(lambdak)/k where k is the number of tiles in the 
cluster, c is 0.3169 and lambda (L) is 4.0626.  See the 
entry for “Polyomino” in Wikipedia. 

A third approach uses branching.  There are eight 
ways a second tile can be touching a first to form 
eight limbs.  And there are at most 7 places that a 
third tile can be attached to the end of any of the 
eight limbs to form 56 branches.  And there are at 
most 7 places that a fourth tile can be attached to the 
end of any of the 56 branches to give 392 leaves.  
The number of combinations given by this approach 
is 8*7(k-2).  This is definitely an upper-limit.  It ig-
nores duplicates and overlaps.  For example the pat-
tern N-E-S-W is the same as E-N-W-S.  Limiting the 
number of leaves reduces the overlaps.  

Results for all three methods are shown in Table 17.   

Table 17 Limits: Number of Combinations of k Tiles 

 Method 1 Method 2 Method 3
k 8*[2(k-2)] c*(Lk)/k 8*[7(k-2)]
2 8 3 8
3 16 7 56
4 32 22 392
5 64 70 2,744
6 128 237 19,208
7 256 827 134,456
8 512 2,939 941,192
9 1024 10,615 6,588,344

10 2,048 38,812 46,118,408
11 4,096 143,342 322,828,856

12 8,192 533,814 2,259,801,992
 
Note that Methods 1 and 2 are lower limits while 
Method 3 is an upper limit.   

Appendix L: Combinations of k Tiles - Empirical 
An empirical approach counts how many unique 
shapes involving “runs” of size k can be places inside 
a square grid with sides L where N = L2.  A “run” 
involves any group of tiles that “touch” in any way.  

Consider runs of size two in a 2x2 grid.  There are 
six: two horizontal, two vertical and two diagonal. 

Consider runs of size two in a 3x3 grid.  There are 20 
unique runs: 6 horizontal, 6 vertical and 8 diagonal.  
But runs of size two are uninformative; they are nec-
essarily straight lines. 

Consider runs of size three in a 2x2 grid.  There are 
four: a single “L” shape rotated through four posi-
tions.  Note that “L” is the only non-linear shape pos-
sible in a 2x2 grid.  This situation is uninformative 
because it precludes straight-line runs.  

Consider runs of size three in a 3x3 grid.  There are 
44 unique runs.  There are eight straight-line runs: 
three horizontal, three vertical and two diagonal.  
There are 24 “L” shaped runs: four within each of the 
six overlapping 2x2 grids. And there are 24 new non-
L shapes in a 3x3 grid.  These shapes all involve a 
2x3 part of the 3x3 grid.  Suppose the nine cells are 
numbered starting at upper-left.  Consider shapes 1-
4-8 and 2-4-7: call them “5s” since their shape is 
close to that of clock hands at 5:00. .  They are mir-
ror-images when flipped, but not when rotated.  Also 
consider 2-4-8: a “Y” shape.  There are four ways 
each of these three shapes can be rotated for a total of 
12 shapes.   This situation is informative.  It allows 
straight-line runs plus four other non-linear shapes.   
Note that this total of 44 unique runs is less than the 
56 combinations estimated using Method 3.  

Consider runs of size three in a 4x4 grid.  There are 
100 unique runs of size three in the four overlapping 
3x3 grids and the nine overlapping 2x2 grids.  There 
are 16 straight-line runs: four horizontal, four vertical 
and eight diagonal (two in each of the four 3x3 over-
lapping grids).  There are 36 “L” shaped runs: four 
within each of the nine overlapping 2x2 grids.   There 
are 48 non-L shapes: 12 (3*4) within each of the four 
of the 3x3 cell shaped runs.  How can this exceed the 
56 upper-limit in Table 17?  

Going to runs of size four introduces new shapes and 
the problem quickly becomes increasingly complex.  
New mathematics is needed to describe the number 
of combinations possible in titles that can touch on 
their corners as well as one their sides.  This study 
might be named “octi-ominoes” indicating eight 
ways to form a connection as opposed to the tradi-
tional “quadro-ominoes” which is limited to four 
sides.  
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Appendix M: B-day Problem: Chance of a Match 
As mentioned previously, these results are approxi-
mate: they assume the trials are independent.  Once 
the number of pairs or tries (T) is known, the chance 
of no match is (1-p)T.   The chance of at least one 
match is simply the complement: 1 - (1-p)T. 

Table 18 shows the chance of a match for some 
common values of N – in multiples of five.  Table 19 
shows the number of people needed for selected per-
centages.   Table 19 shows the approximate (memo-
rable) chance of a match as a function of the number 
of people – in multiples of seven   

Table 18 Birthday Problem: Chance of a Match #1 
People Pairs Chance Chance 

N N(N-1)/2 No match Match 
15 105 75% 25% 
20 190 59% 41% 
25 300 44% 56% 
27 351 38% 62% 
28 378 35% 65% 
30 435 30% 70% 
35 595 20% 80% 
40 780 12% 88% 
45 990 7% 93% 
50 1,225 3% 97% 

Table 19 Birthday Problem: Chance of a Match #2 
People Pairs Chance Chance 

N N(N-1)/2 No match Match 
15 105 75.0% 25.0% 
23 253 50.0% 50.0% 
26 325 41.0% 59.0% 
27 351 38.2% 61.8% 
28 378 35.5% 64.5% 
30 435 30.3% 69.7% 
32 496 25.6% 74.4% 
41 820 10.5% 89.5% 
48 1,128 4.5% 95.5% 
59 1,711 0.9% 99.1% 

Table 20 Birthday Problem:  Chance of a Match #3 
People Pairs Chance Chance 

N N(N-1)/2 Match-1 Match-2 
14 91 22.1% 20% 
21 210 43.8% 40% 
28 378 64.5% 60% 
35 595 80.5% 80% 
42 861 90.6% 90% 
49 1,176 96.0% 95% 
56 1,540 98.5% 99% 
63 1,953 99.5% 99.5% 
70 2,415 99.9% 99.9% 

Appendix N: Three Meanings of Expected 

“Expected” has three different meanings.   

1. Expected is what is most likely (the mode).  This 
is an ordinary or colloquial meaning.   

2. Expected is what happens most (a majority) of 
the time: it is more likely than not.  In ordinary 
usage, little attention is paid to the difference be-
tween most of the time (majority) and most 
likely (mode). In any process with just two out-
comes, the most likely is what happens most of 
the time (the majority). There must be at least 
three outcomes in order for there to be a differ-
ence between majority and mode.  

3. Expected is what happens on average (the mean).  
This is the technical or statistical meaning.  : 
The “expected” value is the average value of a 
probability distribution.   

Consider the binomial distribution of a Ber-
noulli random variable with p chance of success 
in a single try.  The expected number of suc-
cesses in N tries is given by N*p.  

If this expected value is an integer, the mean, 
median and mode coincide. (Lord, 2010)  

Although the mode is most likely, this does not 
mean the mode is more likely than not (occurs 
most of the time). As shown in Appendix C, the 
probability of k=1, P(k=1), never exceeds 50%.  
So the mode does not occur most of the time.    

In ordinary usage, an event is expected in N tries if it 
has one chance in N.  Which of these three usages 
does this usage entail? 

Consider a six-sided die where one of the six sides is 
labeled a success.  Rolling one success is expected 
when rolling six of these die. This situation satisfies 
the criteria a Bernoulli random variable.  When N = 
1/p, the associated binomial distribution has a mean, 
median and mode of one.  So, one is both the long-
term average (mean) and the most likely outcome 
(mode) – but it seems it is not what happens most of 
the time (majority).   

Since the median always equals the mean when N = 
1/p, having the expected number of success or more 
always happens most of the time.  Using this ex-
tended interpretation of expected, one can say the 
expected (or more) happens most of the time.   

If expected is extended to include the average or 
higher for most of the time, then when N = 1/p, all 
three criteria are satisfied: average (mean), most 
likely (mode) and most of the time (majority).    

  


