Statistical Literacy:
Coincidence

The "Birthday" Problem
Q. What is the chance that two people in a group will have the same birth-date: month and day? A. One chance in 365 ?

The "Birthday" Problem Math Answer

If the chance of an rare event is p and $p=1 / k$, then this event is "expected" in k trials.
In a group of size N , there are $(\mathrm{N}-1)(\mathrm{N} / 2)$ pairs.
Solve for $\mathrm{N}(\mathrm{k}) . \mathrm{k}=(\mathrm{N}-1)(\mathrm{N} / 2)=\left(\mathrm{N}^{\wedge} 2-\mathrm{N}\right) / 2$
Quadratic: $\mathrm{N}^{\wedge} 2-\mathrm{N}-2 \mathrm{k}=0$
Estimate: $\sim N^{\wedge} 2 / 2=1 / p$.
Trial and error: [27^2]/2 $=364=1 / \mathrm{p}=\mathrm{k}$
Q. Are students convinced? No!!!

Runs: Flipping Coins

Law of Very-Large Numbers (Qualitative):
The very unlikely is almost certain given enough tries

Flipping a Fair Coin : 2^4 = 16

Flipping a Fair Coin

Percentage of Runs that are of Size K

Flipping a Fair Coin: 2^5 = 32

Distribution of Longest Run: $\mathrm{N}=\mathbf{3 2}$

Runs in Flipping a Fair Coin

1) Unlikely is expected given enough tries.
2) Unlikely (1 chance in k) is expected in k tries

Run of 6 is expected in 64 tries: $2 \wedge 6=64$.
Run of 7 is expected in 128 tries: $2 \wedge 7=128$
Run of 8 is expected in 256 tries: $2 \wedge \mathbf{8}=\mathbf{2 5 6}$
\mathbf{k} tries $=\mathbf{k}$ flips of a coin

Patterns in Rice

With rice scattered in two dimensions, people can often see shapes that are very unlikely.
Let's simulate rice in Excel where each cell has $\mathbf{1}$ chance in 10.

Patterns in Rice

In 2D, there are more ways for cells to connect:
2 horizontally (left side or right side)
2 vertically (above and below)
4 vertices (NE, SE, SW and NW corners)
8 TOTAL ways two random cells can connect.

Chance that $\mathbf{6}$ cells with rice will touch:
a. 1 in $10 \wedge$ 6: 1 in a million
b. $(8-1)^{\wedge} 6=262,144$

