Coincidence in
Runs and Clusters
MILO SCHIELD
Augsburg College
Director，W．M．Keck Statistical Literacy Project
US Rep，International Statistical Literacy Project
Member，International Statistical Institute
President，ASA Twin Cities Chapter
March 8，2012
Paper at www．Statit．org／pd／／2012Schield－MAA．pdf
Slides at www．StatLit．org／pd／2012Schield－StatChat6up．pdf

Chance：run of 10 heads？
One chance in $2^{\wedge} 10=1$ in 1,024

ヶロ
 ○，．．．

 ，男
 …

 ，新

Three Heads in a Row

＊has one chance in eight． $\mathrm{P}=1 / 8$
＊is expected in 8 sets of three． $\mathrm{N}=1 /(1 / 8)=8$ ．
Binomial distribution： $\mathrm{N}^{*} \mathrm{P}=<$ Expected $>=$ Mean．
If $\mathrm{N}=1 / \mathrm{P}$ ，then $<\operatorname{Exp}>=1$ ．

Distribution of Longest Run of Successes
$\mathrm{N}=2:$ Counts: 1, 2, 1: TT; HT, TH; HH
$\mathrm{N}=3:$ Counts: 1, 4, 2, 1.
0H: TTT. 1H: HTT, THT, TTH, HTH.
2H: HHT, THH. 3H: HHH.
$\mathrm{N}=10: 1,143,360,269,139,64,28,12,5,2,1$.
Mode=2, Median=3, Mean = 2.80.
Mean $<>$ 3, but close enough as a rule-of-thumb.

Summary Statistics: Distribution of Longest Runs				
K	N	Mode	Median	Mean
3	8	2	2	2.51
4	16	3	3	3.43
5	32	4	4	4.38
6	64	5	5	5.35
7	128	6	6	6.34
8	256	7	7	7.32
9	512	8	8	8.3
10	1,023	9	9	9.26

Runs: Adjacent Events

Law of Very-Large Numbers (Qualitative):
The very unlikely is almost certain given enough tries

RUNS RULE-OF-THUMB:
A run of events with 1 chance in P is generally found in N tries.

Conclusion

Students need to "see" that coincidences

1. are more common than expected
2. depend on the context
3. compare ex-ante with ex-post
4. may still be signs of causation (Cholera)

That runs with 1 chance in \mathbf{N} are generally found in \mathbf{N} tries.

90 tries/row, 15 rows: 1450 tries
Run of 10 (or more) is generally found

4 口

 , …4 4 4 …

 - $4 \boldsymbol{4}$

B H 品

Patterns in Rice

With rice scattered in two dimensions, people can often see shapes that are very unlikely.
Let's simulate rice in Excel where each cell has $\mathbf{1}$ chance in 10.

Conclusion

Students need to "see" that coincidences

1. are more common than expected
2. depend on the context
3. compare ex-ante with ex-post
4. may still be signs of causation (Cholera)

That runs with 1 chance in \mathbf{N} are generally found in \mathbf{N} tries.

Patterns in Rice

In 2D, there are more ways for cells to connect:
2 horizontally (left side or right side)
2 vertically (above and below)
4 vertices (NE, SE, SW and NW corners)
8 TOTAL ways two random cells can connect.

Chance that $\mathbf{6}$ cells with rice will touch:
a. 1 in $10 \wedge$ 6: 1 in a million
b. $(8-1)^{\wedge} 6=262,144$

The "Birthday" Problem Math Answer
If the chance of an rare event is p and $p=1 / k$, then this event is "expected" in k trials. In a group of size N , there are $(\mathrm{N}-1)(\mathrm{N} / 2)$ pairs. Solve for $\mathrm{N}(\mathrm{k}) . \mathrm{k}=(\mathrm{N}-1)(\mathrm{N} / 2)=(\mathrm{N} \wedge 2-\mathrm{N}) / 2$ Quadratic: $\mathrm{N} \wedge 2-\mathrm{N}-2 \mathrm{k}=0$
Estimate: $\sim N \wedge 2 / 2=1 / p$. Trial and error: [27^2]/2 = $364=1 / \mathrm{p}=\mathrm{k}$ Q. Are students convinced? No!!!

49 Connections: Side-To-Side												
Schield (2011)			RICHARD VON MISES' BIRTHDAY PROBLEM								28 People	
		Month	2	3	10	6	6	9	6			
		Day	14	3	13	27	13	7	24			
Month	Day										Month	Day
1	24										1	31
9	8	E									6	28
12	6										12	24
12	28										10	1
10	27										11	19
9	18									W	9	8
4	12										4	16
		Month	8	8	6	5	7	4	7			
		Day	13	3	19	3	30	9	18			

21 Connections: Same-side ${ }^{\text {Narch2012 }}{ }^{28}$												
Schield (2011)			RICHARD VON MISES' BIRTHDAY PROBLEM								28 People	
		Month	3	2	2	3	9	3	5			
		Day	4	5	9	29	20	5	20			
Month	Day										Month	Day
6	22									E	4	1
10	8										7	10
5	5										3	26
11	23										3	10
3	27									E	4	1
10	2										9	8
2	21										5	7
		Month	8	1	10	12	9	5	5			
		Day	18	6	11	9	3	26	19			

Connections and Chance		
Pairs	GROUP	Details
196	Quadrants 1-4	49 pairs each
49	Side-to-Side	
49	Top-to-Bottom	
84	Within each side	21 pairs each
378	TOTAL	
A "birthday" match has one chance in 365. In a group of 28, we have 378 pairs: ($\mathrm{N}-1$)($\mathrm{N} / 2$). A match is expected: Match is more likely than not.		

Conclusion
Students need to "see" that coincidences
1. are more common than expected
2. depend on the context
3. compare ex-ante with ex-post
4. may still be signs of causation (Cholera)
That runs with 1 chance in N are
generally found in N tries.

ASA Chapter \& StatChat
May 9 Wednesday 6 PM Augsburg
Wed May 9. Augsburg College. 6-9 PM. Supper
Chapter website: $\underline{\text { www.amstat.org/chapters/twincities/ }}$
SPEAKERS:
Marc Isaacson: Teaching Activities
Robert Raymond: Untangling a Conundrum.
Milo Schield: Introducing the Matrixx Case
Danny Kaplan: Comments on US Supreme Court
Matrixx Case: Is Significance Significant?

