Big Data Creates Beguiling Coincidences

MILO SCHIELD,
 Augsburg College

Director, W. M. Keck Statistical Literacy Project US Rep, International Statistical Literacy Project Member, International Statistical Institute

May, 2012
These slides:
www.statlit.org/pdf/2012Schield3Keene6up.pdf Related paper at www.StatLit.org/pdf/2012Schield-MAA.pdf

Not Coincidence

The two major products that came out of Berkeley:
LSD and UNIX.
We don't believe this is coincidence!

Computer programmer: Jeremy S. Anderson

Coincidence?
Virginia Woman Wins \$1 Million Lottery Twice in the Same Day

Cancer Cluster In St. Paul: Correlation Or Coincidence?

Run of Heads (Red Cells): Chance of 5 Touching: 1 in $32\left(2^{\wedge} 5\right)$

Clusters: Grains of Rice Chance of Red: One in 10																			
A3						-				f_{x}		=RANDBETWEEN(0,9)							
	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0		P	Q	
3	9)			9	9)	D2	2	5	3	5	5	0	5	5
4	8	0	6	4	1	6	7	4	0	2	2	0	3	7	0	D	9	8	
5	3	1	7	3	5	2	5	6	8	7	2	0	4	8	9	2	2	9	
6	9	0	1	4	3	4	2	8	9	2	6	6	4	7	7	7	9	2	3
7	9	6	2	1	9	0	4	3	8	6	2	7	5	7	5	5	1	3	3
8	4	3	6	1	5	\%	1	9	4	8	4	9	2	6	1	1		7	2
9	0	0	2	4	3	0	5	5	9	3	1	6	9	5		3	5	8	4
10	9	6	6	7	5	0	6	6	1	2	6	6	0	9	3	36	6		8
11	9	1	0	4	7	4	2	4	4	0	4	3	8		4	4			5
12	98	8	0	1	4	6	0	8	2	0		2	3	5	6	6		5	
www.Statititorg/Excel/2012Schield-Rice.xls																			

Runs and clusters are much more likely than expected!

When students press F9, they often get:

RUNS	CLUSTERS
a run of 10 heads:	a cluster of six squares:
one chance in $2^{\wedge 10}$	one chance in $10 \wedge 6$
a "thousand-year flood" every year	a "million-year flood" every year

They get unlikely results every time!

Explanation \#1
The question is ambiguous

What is the chance of "that"?

- At a specific place or anywhere?
- Paint the target before or after the shooting?
- Before or after the fact (ex post vs. ex ante)?

Consider a run of 8 heads:

- One chance in 256 at a pre-designated spot
- Close to 50% somewhere in the next 256 flips

Coincidence increases as data increases
$\mathrm{P}=$ chance of success on next try
$\mathrm{K}=$ length of a run of successes
Chance of a run of length k : p^{k}. Decreases as $\mathrm{K} \uparrow$
$\mathrm{n}=$ number of independent factors
Chance of two matching runs of length K :
$1-\left(1-\mathrm{P}^{K}\right)^{n}$. Increases as $\mathrm{n} \uparrow$

