\\ \title{
Statistical Literacy\\ \title{
Statistical Literacy and Mathematics and Mathematics \\ \\ MILO SCHIELD, \\ \\ MILO SCHIELD, Augsburg College Augsburg College \\ Director, W. M. Keck Statistical Literacy Project US Rep, International Statistical Literacy Project \\ Member, International Statistical Institute President: Twin Cities Chapter, ASA \\ Webmaster: www.StatLit.org \\ May 17, 2012 \\ Slides at www.StatLit.org/pdf/2012Schield7Keene6up.pdf
}

## Quantitative Literacy \& Numeracy

Quantitative literacy (QL) and Numeracy:

1. NO solid or rigorous definitions
2. NOT centered on any algebraic expressions
3. NOT defined by unique mathematics topics
4. ARE just different forms of math appreciation
5. ARE just various forms of Math-Lite

| Quantitative Literacy is <br> More than Math Appreciation |
| :--- |
| Statistical literacy, quantitative reasoning, <br> quantitative literacy, numeracy: <br> are NOT mathematics because $\ldots \ldots \ldots \ldots \ldots .$. <br> [Audience suggestions] |
|  |

Statistical Literacy

Statistical literacy is the ability to read and interpret summary statistics in the everyday media: in graphs, tables, statements, surveys and studies.

Statistical literacy is needed by data consumers - students in non-quantitative majors.

About $40 \%$ of all US college students graduating in 2003 had non-quantitative majors.

Statistical literacy studies all the influences on statistics.



Whale found dead in Wash. had swallowed golf ball


Seen: unlikely conjunction
Unseen: \# ways to generate that unlikely conjunction.

Mathematics reveals hidden connections.
N logical events ( k at a time) map onto n physical events

$$
\begin{array}{lcr}
\mathrm{n}=\mathrm{N}+\mathrm{k}-1 . & \mathrm{n} \ll \mathrm{~N} * \mathrm{k} ; & \mathrm{n} \sim \mathrm{~N} \\
10=8+3-1 . & 10 \ll 24[8 * 3] ; & 10 \sim 8
\end{array}
$$

Analogous to combinations vs. permutations.

| Size of a statistic depends on what is "taken into account" |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| State Prison Expense (1996) |  |  |  |  |  |
| State | Total | Compare | Inmates | Per Inmate | Compare |
| MN | \$184M | 27\% more | 4,865 | \$37,825 | 56\% more |
| IA | \$144M | 12\% less | 5,929 | \$24,286 | 36\% less |
| State | Total | Compare | Inmates | per Inmate | Compare |
| CA | \$2.9B | 50\% more | 136 K | \$21,385 | 25\% less |
| NY | \$1.9B | 34\% less | 69 K | \$28,426 | $33 \%$ more |







| Ratios: influenced by confounders Math-Stat Principles |
| :---: |
| Partial derivative can have a different magnitude and a different sign than a total derivative. |
| Statistical significance can be influenced by what is taken into account |


| Recommendation |
| :--- |
| Mathematics departments should give |
| strong support for quantitative literacy |
| courses and programs |
| provided they embody high-level |
| principles that are taught in upper-level |
| math and stat courses - even if those |
| principles are taught in an introductory |
| manner. |



## Conclusion

If courses or programs involving numeracy, quantitative literacy or statistical literacy are to survive much less to thrive -
they must be strongly supported by mathematics and statistics departments and faculty.

| References |
| :--- |
| Schield (1999). Simpson's Paradox and Cornfield's |
| Conditions. www.StatLit.org/pdf/1999SchieldASA.pdf |
| Schield, Milo (2006). Presenting Confounding and |
| Standardization Graphically. STATS Magazine, See |
| www.StatLit.org/pdf/2006SchieldSTATS.pdf. |
| Schield, Milo (2012). Coincidences. MAA Boston. See |
| www.StatLit.org/pdf/2012SchieldMAA.pdf |
| www.StatLit.org/Excel/2012Schield-Runs.xls |
| www.StatLit.org/Excel/2012Schield-Rice.xls |
| www.StatLit.org/Excel/2012Schield-Bday.xls |

