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Introduction 
 
It is reasonably well-known that you can usually get a significance test "for free" 
by constructing a confidence interval around an obtained statistic and seeing 
whether or not the corresponding hypothesized parameter is "captured" by the 
interval.  If it isn't inside the 95% confidence interval, for example, reject it at the 
.05 significance level and conclude that the sample finding is statistically 
significant.  If it is, don't reject it; the sample finding is not statistically significant 
at that level.  So if you want a significance test you can either carry it out directly 
or get it indirectly via the corresponding confidence interval. 
 
If you want a confidence interval you can carry it out directly (the usual way) or 
you can get it indirectly by carrying out significance tests for all of the possible 
"candidates" for the hypothesized parameter (not very practicable, since there is 
an infinite number of them!). 
 
But should you ever carry out a hybrid combination of hypothesis testing and 
interval estimation, e.g., by reporting the 95% confidence interval and also 
reporting the actual p-value that "goes with" the obtained statistic, even if it is 
greater than or less than .05?  Some people do that.  Some journals require it. 
 
It is also reasonably well-known that if you don't have a random sample you 
really shouldn't make any statistical inferences.  (Just get the descriptive 
statistic(s) and make any non-statistical inferences that may be warranted.)  
Exception: If you have random assignment but not random sampling for an 
experiment, randomization tests (permutation tests) are fine, but the inference is 
to all possible randomizations for the given sample, not to the population from 
which the sample was [non-randomly] drawn. 
 
In what follows I will try to convey to you what some of the practices are in 
various disciplines, e.g., education, nursing, psychology, medicine, and 
epidemiology (the disciplines that I know best).  I will also give you my personal 
opinion of such practices and in an appendix to this paper I will provide a brief 
test of the correctness of various wordings of statistical inferences. 
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The significance test controversy 
 
Up until about 40 years ago or thereabouts, traditional significance tests were 
about the only statistical inferential methods that were used.  There were 
occasional arguments among research methodologists concerning the approach 
of R.A. Fisher vs. that of Jerzy Neyman and Egon Pearson; see, for example, the 
interesting discussion between  Berkson (1942, 1943) and Fisher (1943) 
regarding the linearity of a set of data, and Salzburg's (2001) fascinating account 
of Fisher's conflicts with Karl Pearson (Egon's better-known father) and with 
Neyman.  [Huberty (1987) has referred to Fisher's approach as significance 
testing and Neyman & Pearson's approach as hypothesis testing.] There were 
also a few researchers (e.g., Meyer, 1964), who argued in favor of the use of 
Bayesian inference, but most articles published in the professional journals 
continued to emphasize traditional significance testing. 
 
That all started to change when Morrison and Henkel (1970) compiled a book 
with the same title as that of this section.  The individual chapters were written by 
various people who were concerned about the overuse and/or misuse of 
significance tests, especially in sociology, along with a few defenders of the 
status quo.  Things really came to a head in the late 80s with the publication of a  
chapter by Woolson and Kleinman (1989) regarding practices in medicine and 
epidemiology, and in the late 90s with the appearance of the book, What if there 
were no significance tests?, edited by Harlow, Mulaik, and Steiger (1997), with 
an emphasis on psychology and education.  The latter work, like the Morrison 
and Henkel book, consisted of chapters written by people with different points of 
view, most of whom argued that significance tests should be replaced by 
confidence intervals around the corresponding "effect sizes".  
 
[Interesting aside:  Berkson's 1942 article (but not Fisher's response or Berkson's 
rejoinder) was included in Morrison and Henkel's 1970 book and was also cited 
in Cohen's 1994 article--see below--that was reprinted in the Harlow, et al. 1997 
book.] 
  
In the last ten years or so, confidence intervals have begun to replace 
significance tests, but significance tests still have their defenders.  In 
epidemiology and medicine, and to a lesser extent in nursing, there has been a 
recent tendency to emphasize interval estimation (usually 95% confidence 
intervals) while at the same time reporting a variety of p-values that correspond 
to the area(s) in the tail(s) of the relevant sampling distribution(s).  
 
Confidence intervals:  The alleged panacea 
 
One of the arguments against significance tests has been that many users of 
them botch the wording when they report the results of their studies.  For 
example, many methodologists have rightly objected to statements such as  "the 
probability is less than .05 that the null hypothesis is true".  [Cohen (1994) made 
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the unfortunate mistake of claiming that some people say "the probability is less 
than .05 that the null hypothesis is false".  I've never heard anyone say that.]  
The null hypothesis is either true or false.  There is no probability associated with 
it, at least in the classical, non-Bayesian context.  The probability applies to the 
likelihood of the sample finding, given that the null hypothesis is true; i.e., it is a 
conditional probability. 
 
The claim is often made that the wording of confidence intervals is much more 
straightforward, and researchers are less likely to say the wrong things.  Not so, 
say Cumming (2007), Cumming and Finch (2005), Moye (2006), Sober (n.d.), 
and others.  For every user of significance tests who says "the probability is less 
than .05 that the null hypothesis is true" you can find some user of confidence 
intervals who says "the probability is .95 that my interval includes the parameter".  
Your particular interval doesn't have that .95 probability; the probability, if that 
word is even relevant for confidence intervals, applies to all such intervals 
created in the same way. 
 
The one sense in which confidence intervals constitute a panacea is that you 
don't have to do any hypothesizing beforehand!  Researchers often find it difficult 
to specify the magnitude of a parameter in which they are interested, whether the 
basis for that specification be theory, previous research, or whatever.  With 
interval estimation all you need to do is specify the confidence you want to have 
and the margin of error that is tolerable (usually the half-width of the confidence 
interval), and the requisite sample size for "capturing" the parameter can be 
determined.  
 
One size confidence interval, different p-values 
 
There recently appeared two articles concerned with smoking cessation efforts, 
one in the medical literature (Peterson, et al., 2009) regarding teenagers who 
smoke, and one in the nursing literature (Sarna, et al., 2009) regarding nurses 
who smoke.  Although the former was a randomized clinical trial and the latter 
was an observational study, both used the same statistical inferential approach of 
constructing 95% confidential intervals throughout, accompanied by actual p-
values.   
 
The principal finding of the Peterson study was "an intervention effect on 6-month 
prolonged smoking abstinence at 12 months after becoming intervention eligible 
(21.8% vs 17.7%, difference = 4.0%, 95% CI = – 0.2 to 8.1%, P =.06" (page 
1383).  [They called that "almost conclusive evidence" (same paragraph, same 
page). ]  Two supplementary findings were: "Among female and male smokers, 
respectively, the corresponding intervention effects were 5% (95% CI = 0.5 to 
10%, P = .03) and 2.9% (95% CI = – 4.3 to 9.7%, P = .41)" (also same 
paragraph, same page). 
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One of the principal findings of the multiple logistic regression analysis reported 
in the Sarna study, comparing "any quit attempt" with "no quit attempt" (the 
dichotomous dependent variable) for smokers of 10-19 cigarettes per day vs. 
smokers of 20+ cigarettes per day (one of the independent variables) was an 
odds ratio of 2.43, 95% confidence interval 1.07 to 5.52, P = .03 (Table 4, page 
253).  Another finding from that analysis for another independent variable, 
baccalaureate vs. graduate degree, was an odds ratio of 1.54, 95% confidence 
interval 0.65 to 3.66, P = .33 (same table, same page). 
 
What we have here in both articles is what I referred to earlier in this paper as a 
hybrid combination of constant confidence interval and varying p-values.  I 
personally don't like it.  If the authors are concerned solely with 95% confidence 
intervals I think they should be concerned solely with .05 p-values.  In the 
Peterson study, for example, the 95% confidence interval for that difference of 
4.0% in prolonged smoking abstinence [it should be 4.1%] didn't include an odds 
ratio of 1.00, so of course p is less than .05.  Should the reader of the article care 
that p is actually .03?  I don't think so.  [And I don't think they should have used 
the phrase "almost conclusive evidence"!]  The only justification I can see for 
reporting actual p-values in conjunction with 95% confidence intervals is the 
incorporation in a meta-analysis with p-values from other studies carried out on 
the same topic. 
 
No significance tests or confidence intervals 
 
Whether to use significance tests, confidence intervals, or both, pales in 
comparison to the more serious matter of the appropriateness of any inferential 
statistics.  The standard gospel is easy to espouse:  Use traditional inferential 
statistics if and only if you have a random sample from a well-defined population.  
So what's the problem? 
 
First of all, there are researchers whom I call the "regarders", who don't have a 
random sample but who like to think of it as a sample from which a statistical 
inference can be made to a population of entities "like these".  They refuse to quit 
after reporting the descriptive statistics, apparently because they find it difficult 
and/or unsatisfying to interpret the data without the benefits of inferential 
statistics.  (Example: Sarna, et al., 2009.  But they're not the only ones; it is 
clearly the modal approach in the research literature in education, nursing, 
psychology, medicine, and epidemiology.) 
 
Secondly, there are the "populations are samples, too" advocates, who insist on 
carrying out some sort of statistical inference when they actually have data for an 
entire population.  (Example: The negative correlation between land area and 
number of inhabitants for the 50 states is statistically significant at the .05 level.)  
The inference is allegedly from a population at one point in time to that same 
population at other points in time, even though the time point has not been 
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selected at random.  (See the article by Berk, Western, & Weiss, 1995 about this, 
along with the various reactions to that article in the same journal.) 
 
Then there are the "random is random" folks who use traditional t-tests or other 
general linear model techniques to carry out significance tests, rather than 
randomization (permutation) tests, when they have random assignment but do 
not have random sampling.  Edgington and Onghena (2007) and others (e.g., 
Ludbrook & Dudley, 2000) have tried to get people to stop doing that, but to little 
avail.  [See also the articles by Levin (1993) and by Shaver (1993), who come 
down on opposites of the matter.]  A traditional t-test can occasionally be used as 
an approximation to a randomization test, if the researcher does not have easy 
access to the computer software that is necessary for carrying out a 
randomization test. 
 
Shortly after Morrison and Henkel (1970) compiled their book, the famous 
statistician John W. Tukey (1977) wrote his treatise on Exploratory data analysis.  
In that book he claimed that descriptive statistics had been given short shrift and 
researchers should "massage" their data more carefully before, or instead of, 
carrying out statistical inferences.  He provided several techniques for 
summarizing sample data, e.g., stem-and-leaf diagrams and q-q plots, that help 
to bring out certain features in the data that other descriptive statistics do not, 
and inferential procedures can not.  I agree with Tukey's claim about descriptive 
statistics getting short shrift [but I'm not attracted to some of his statistical 
graphics].  I have even seen articles that provide an analysis of variance 
(ANOVA) summary table but not the sample means that produced it! 
 
A final note 
 
In this paper I have alluded to some criticisms that I have made in previous 
sources (Knapp, 1970; 1998; 1999; 2002).  I could go on and on regarding some 
controversies regarding other practices.  For example, why do some people test 
the statistical significance of baseline differences between experimental and 
control groups in a randomized experiment?  (Don't they trust probability to 
balance the groups, and don't they understand that the significance test takes 
care of chance differences?)  Or how about one-sided vs. two-sided significance 
tests and confidence intervals?  (See Cohen's delightful 1965 piece about an 
argument between Doctor One and Doctor Two).   But I wanted to keep this short 
and sweet.  I know it's short.  I hope you've found it to be sweet. 
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Appendix:  The wording of significance tests and confidence intervals 
 
The situation (adapted from Cumming & Finch, 2005):  You are interested in the 
verbal ability of a population of school children, and you have administered a test 
of verbal ability to a sample of 36 children drawn randomly from the population.  
You are willing to assume that the test scores are normally distributed in that 
population.  The sample mean is 62 and the sample standard deviation (with 
division by n-1) is 30.  For those data the estimated standard error of the mean is 
5.  A two-sided t-test of the hypothesis that the population mean is 70 (the test of 
verbal ability has been normed on a different population having that mean) 
produces a two-tailed p-value of .12.  Using a critical value of t = 2.03, the two-
sided 95% confidence interval extends from 51.85 to 72.15.  
 
On a scale from 1 to 3 (where 1= just plain wrong, 2= wrong but generally 
conveys the right idea, and 3 = correct), rate each of the following wordings for 
the significance test and for the confidence interval:  
 
1.   The probability is .12 that the sample mean is 62. 
 
2.   The probability is less than .12 that the sample mean is 62. 
 
3.   The population mean is 70. 
 
4.   The probability is .12 that the population mean is 70. 
 
5.   The probability is less than .12 that the population mean is 70. 
 
6.   The population mean is not 70. 
 
7.   The probability is less than .12 that the population mean is not 70. 
 
8.   If you were to test another random sample of 36 schoolchildren from that 
same population, their sample mean would be 62. 
 
9.   If you were to test another random sample of 36 schoolchildren from that 
same population, the probability is .12 that their sample mean would be less than 
70. 
 
10. If the population mean is 70, the probability is less than .12 that you would 
get a sample mean that differs from the population mean by 8 points or more. 
 
11. You are 95% confident that the sample mean is between 51.85 and 72.15. 
 
12. The population mean is greater than or equal to 51.85 and less than or equal   
to 72.15. 
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13. The probability is .95 that the population mean is between 51.85 and 72.15. 
 
14. You are 95% confident that the population mean is between 51.85 and 72.15. 
 
15. The probability is .95 that the interval from 51.85 to 72.15 includes the 
population mean. 
 
16. You are 95% confident that the interval from 51.85 to 72.15 includes the 
population mean. 
 
17. If you were to test another random sample of 36 schoolchildren from that 
same population, their sample mean would be between 51.85 and 72.15. 
 
18. If you were to test another random sample of 36 schoolchildren from that 
same population, the probability is .95 that their sample mean would be between 
51.85 and 72.15. 
 
19. The 95% confidence interval includes all of those values of the population 
mean that would be rejected at the .05 level of significance. 
 
20. 95% of intervals constructed in this same manner would include the 
population mean. 
 
 
I won't give you the right answers (partly because there is room for some 
disagreement), but I'll give you the hint that these items would come fairly close 
to constituting a perfect Guttman Scale.  If you don't know what that is, you can 
look it up! 


