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Outline

Quite basic examples of when to bother with Bayes

Coda
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Historical Controls

C E Total

Tumor 0 3 3
No Tumor 50 47 97

50 50 100

Fisher’s exact one-sided P = 0.121

But, pathologists get excited:

“The 3 tumors are Biologically Significant”

Statisticians protest:

“But, they aren’t Statistically Significant”
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Include Historical Data

Possibly, the pathologist has historical information for the
same species/strain, same Lab, recent time period with 0
tumors in 450 control rodents

S/he has the following table in mind:

Pooled Analysis
C E Total

Tumor 0 3 3
No Tumor 500 47 547

500 50 550

Fisher’s exact one-sided P
.

= .0075

Convergence between biological and statistical significance!

The Bayesian formalism can be used to bring in the history, in
general giving it partial credit
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Bringing in history

Structure the approach before seeing the data, by identifying
relevant experiments

Use the Bayesian formalism

Control rates are drawn from a Beta(µ,M)
Use all the data to estimate µ and M
(or to produce the joint posterior distribution)
Give the historical data weight equivalent to a sample size of
M̂ with rate µ̂

Female, Fisher F344 Male Rats, 70 historical experiments
(Tarone 1982)

Tumor N M̂ µ̂
bM
N

Lung 1805 513 .022 28.4%
Stromal Polyp 1725 16 .147 0.9%

Adaptive down-weighting of history
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 To find a method for: 
 “… the probability that an 
event has to happen, in 
given circumstances…” 

 Bayes Rule: 
Pr(θ|Y) ∝ Pr(Y|θ) Pr(θ) 

 © http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Bayes.html  
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Bayesian Analysis

1. Design a study & collect data

2. Specify a statistical model

The “data model” (ok, the model)
A prior distribution and possibly a hyper-prior
Bayesians need to make these explicit

3. Use Bayes’ theorem to produce the Posterior Distribution

4. Do something with it, possibly structured by a loss function

(. . .)2: Posterior Mean
| . . . |: Posterior median
0/1 + c × volume: Tolerance Interval (CI)
0/1: Hypothesis Test/Model Choice

Steps 1 & 2 depend on scientific/policy knowledge and goals

Steps 3 & 4 are governed by the rules of probability

Step 3 does not depend on what you are going to do in Step 4

Evidence, then decisions
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Bother with Bayes when you want

Excellent Bayesian performance

Phase I/II studies

Excellent Frequentist performance

Use priors and loss functions as tuning parameters

To strike an effective Variance/Bias trade-off

Full uncertainty propagation

To design, conduct and analyze complex studies

Sometimes it isn’t worth the bother

Sometimes you are (almost) forced into it
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Bother when you are (almost) forced into it,
at least to generate a procedure

(Adaptive) Design including monitoring

Non-linear and complex models

Diagnostic Tests

Missing Data/Measurement error

Small number of clusters

Complex systems & Complex Goals

Large “P” relative to “N”

Smoothing & dimension reduction via penalties

Spatial models, small area estimates

Data at different spatio-temporal scales

Multiplicity

. . . . . .
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Procedure Generation: Binomial CIs

Intervals produced by the Bayesian formalism

can have excellent frequentist performance

The Beta-binomial Model
Y is the number of events in n trials; θ the event probability

f (y | θ) =

(
n
y

)
θy (1− θ)n−y

Conjugate Beta prior distribution:

g(θ) ∝ θa−1(1− θ)b−1, a, b > 0

Mean: µ = a
a+b

Variance: τ2 = µ(1−µ)
M+1 = µ(1−µ)

a+b+1

M = a + b is the precision and is like a prior sample size
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Posterior Distribution
Shrinkage and Variance Reduction

E (θ | Y ) = µn = Bnµ+ (1− Bn)

(
Y

n

)

V (θ | Y ) =
µn(1− µn)

M + n + 1

Bn =
M

M + n

As n→∞,Bn → 0 (weight on the MLE → 1)
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Beta Priors for Binomial CIs

a b µ M B5 B20 comments

0.5 0.5 .50 1.0 17 5 Jeffreys (U-shaped)
1.0 1.0 .50 2.0 29 9 uniform
3.0 3.0 .50 6.0 55 23 symmetric, informative

CI via the Highest Posterior Density (HPD) region
(horizontal line drawing)

The computer doesn’t know it’s doing a Bayesian
computation
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Binomial CI, frequentist coverage: n = 5

true theta value
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Design

Everyone is a Bayesian in the design phase

All evaluations are “preposterior,” integrating over both the
data (a frequentist act) and the parameters (a Bayesian act)

A frequentist designs to control frequentist risk over a range
of parameter values

A Bayesian designs to control preposterior (Bayes) risk

Bayesian design is effective for both Bayesian and frequentist
goals and analyses
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Bayesian Design to Control Frequentist CI Length

Variance of a single observation: σ2

L is the desired maximal total length (distance from the low
endpoint to the high endpoint) of the CI

For two-sided coverage probability (1− α):

n(σ, L, α) = 4Z2
1−α/2

(
σ

L

)2

If we don’t know σ2, then CI length is, itself, a random
variable and uncertainty related to it must be accommodated

To find a suitable sample size, we can,

do a series of “what ifs” or a “worst case”
put a distribution on σ2 (ideally developed from other, similar
studies) and use it to incorporate uncertainty in its value
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Frequentist CI Length: The Bayesian approach

Background data or prior elicitation provide a prior
distribution (G ) for σ2

Using G , select the sample size (n) to satisfy either,

EG (CI length|n) ≤ L

Or, more relevant for a single study,

prG (CI length > L|n) ≤ γ

Similarly, for testing find n so that,

prG (Power < 0.80|n) ≤ γ
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CI Length: sample size factor for a prior coefficient of
variation (η) relative to knowing σ2 (η = 0)
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Cluster Randomized Trials

Develop an informative prior distribution for the
between-cluster variance using studies thought to have a
similar variance component, and us it

Design: to find the required number of clusters for a stand-alone
analysis

Analysis: to conduct a Bayesian analysis for the between cluster variance
for a study with a small number of clusters that
can’t/shouldn’t stand alone
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Adaptive Design & Allocation

Stopping rules

Adaptive dosing

Adaptive allocation

On baseline covariates, balancing
Allocation on treatment comparisons
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Addressing non-standard and otherwise challenging goals

Bayesians have a corner on the market,
at least wrt to procedure-generation

Regions for parameters

Bio-equivalence & non-Inferiority
Inherently bivariate treatment comparisons

Ranks and Histograms

Non-linear models

Adaptive design

Threshold utilities, for example in allocating federal funds
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Combining endpoint-specific, univariate regions
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Inherently bivariate regions
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Compound sampling
Multiple draws from the prior confers a degree of objectivity
by supporting use of the data to estimate the prior

“Empirical Bayes” or “Bayes empirical Bayes”

θ1, . . . , θK iid N(µ, τ2)

[Yk | θk ] ind N(θk , σ
2
k)

[θk | Yk ] ∼ N
(
µ+ (1− Bk)(Yk − µ), (1− Bk)σ2

k

)
Bk =

σ2
k

σ2
k + τ2

When σ2
k ≡ σ2

µ̂ = Ȳ

S2 =
1

K − 1

∑
k

(Yk − Ȳ )2

τ̂2 = (S2 − σ̂2)+

Yes, it is a random effects ANOVA
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Ranking Standardized Mortality Ratios, SMRs

SMR =
observed deaths

expected deaths

Expecteds from a case mix adjustment model

Rank 3459 dialysis providers using 1998 USRDS data

Large and small providers, so standard errors of the estimated
SMRs vary considerably

Ranging from 1 patient per year to 355 patients per year
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The Ranking Challenge

Ranking estimated SMRs is inappropriate, if the SEs vary over
providers

Unfairly penalizes or rewards providers with relatively high
variance

Hypothesis test based ranking: H0 : SMRunit = 1

Unfairly penalizes or rewards providers with relatively low
variance

Therefore, need to trade-off signal and noise

However, even the optimal estimates can perform poorly
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MLEs and exact CIs
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Shrinkage Plot: MLEs, SEs and Posterior Means (PMs)

Ranked MLEs are different from ranked PMs
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Optimal Ranks/Percentiles

The ranks are,

Rk (θ) = rank(θk ) =
KX

j=1

I{θk≥θj}

P = R/(K + 1)

The smallest θ has rank 1 and the largest has rank K
The optimal SEL estimator is,

R̄k (Y) = Eθ|Y[Rk (θ) | Y] =
KX

j=1

pr(θk ≥ θj | Y)

Optimal integer ranks are, R̂ = rank(R̄)

R̂k (Y) = rank(R̄k (Y)); P̂k = R̂k/(K + 1)

Other loss functions, for example P (above γ)/(below γ) are more relevant in
genomics and other applications wherein the goal is to identify the extremes
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Relations among percentiling methods
1998 USRDS data
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Histogram Estimates

The setup,

θ1, . . . , θK iid G

Yk |θk ∼ fk(y |θk)

GK(t|θ) =
1

K

∑
I{θk≤t}

GK is the “EDF” of the θk operating in this dataset
There is a connection with finite-population inference

The optimal SEL estimate is:

ḠK(t|Y) = E [GK (t; θ)|Y] =
1

K

∑
P(θk ≤ t|Y)

The optimal discrete SEL estimate is:

ĜK (t | Y) : mass 1/K at Ûj = Ḡ−1
K

(
2j − 1

2K
| Y
)
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Gaussian Simulations: GR = ĜK

Need to get the spread right
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Getting the spread right

mu theta

Y

a

b

f

e

c = e + f

   

Figure �� A triangle demonstration of the value of shrinkage

��
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Gaussian mixtures, τ 2 = 1.25:
Need to get the shape right

GAUSSIAN

 
gm

=0
.1

0,
 rl

s=
1

0.
00

0.
05

0.
10

0.
15

−4 −2 0 2 4

T(5)

 

 
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

DP−1

 

 
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

DP−2

 

 
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

SBR

 

 
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

GAUSSIAN

 

gm
=1

, r
ls

=1
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

T(5)

 

 
0.

00
0.

05
0.

10
0.

15
−4 −2 0 2 4

DP−1

 

 
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

DP−2

 

 
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

SBR

 

 
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

GAUSSIAN

 

gm
=1

, r
ls

=2
5 

0.
00

0.
05

0.
10

0.
15

−4 −2 0 2 4

T(5)

 

 
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

DP−1

 

 
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

DP−2

 

 
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

SBR

 

 
0.

00
0.

05
0.

10
0.

15

−4 −2 0 2 4

Rows are σ2
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Estimation relative to a threshold loss function

Consider a mathematically tractable example in the spirit of Title I of the
Elementary and Secondary Education Act

Let θ be the true poverty rate for a single area, “A” be the amount
allocated to the area, N the population size, and Y denote all data

For a threshold T ≥ 0, consider the societal loss function

Eligible for
Condition Concentration Funds? Loss

θ ≥ T yes N × (θ − A)2

θ < T no N × A2

It would be more appropriate to replace squared-error by
absolute error in the last column

Using the Bayesian formalism, the optimal allocation value is,

AT (Y) = N × {E(θ | θ ≥ T , Y)× pr(θ ≥ T | Y)}
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Threshold loss, continued

The allocation formula as a function of the true poverty rate
(θ) has a threshold, but the optimal allocation value is a
continuous function of the data

This may be difficult politically, but it is what it is!
Similarly, agencies (e.g., the CMS) can issue penalties or
rewards as a continuous function of the posterior probability of
exceeding a threshold

For T > 0, N−1AT (Y) is not the “center” of the the
posterior distribution for θ, and

AT (Y)

N
≤ E (θ | Y)

The Bayesian formalism is almost essential in coming up with
an effective allocation
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Bayesians have had many successes,
but there are challenges and a long way to go

Continued development of semi- and non-parametric methods,
especially in multivariate settings

Evaluation of robustness and sensitivity

Choice of hyper-prior and when to use empirical Bayes

Computing innovations

Reporting standards

Model criticism, including evaluation of complex systems
quantifying the contributions of the prior and the likelihood in
producing the posterior

Brad Efron has commented,

“Bayesians get all the glory,
but frequentists do all the hard work”
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The (Bayesian) Future is Bright

The benefits of Bayesian structuring are substantial, but
validity and effectiveness require expertise and care

The approach is by no means a panacea

Computing has enabled accommodating complex data and
implementing models

Enabling collaboration on challenging and important
applications

Success has and will depend on “anchored flexibility”

Eclecticism is (almost) always necessary, however it is essential
to have a point of view, a framework, aids to navigation

Keep in mind that traditional values still apply,

Space-age techniques will not rescue stone-age data!
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#questions?

Bayes, why bother? 44/46 T. A. Louis: Johns Hopkins Biostatistics & Census Bureau



Literature

Carlin BP, Louis TA (2009). Bayesian Methods for Data Analysis, 3rd edition. Chapman & Hall/CRC,
Boca Raton, FL.

Carvalho B, Louis TA, Irizarry RA (2009). Quantifying Uncertainty in Genotype Calls. Bioinformatics, 26:
242-249.

Li Q, Fallin D, Louis TA, Lasseter VK, McGrath JA, Avarmopoulos D, Wolyniec PS, Valle D, Liang K-Y,
Pulver AE, Ruczinski I (2010). Detection of SNP-SNP Interactions in Trios of Parents with Schizophrenic
Children. Genetic Epidemiology, 34: to appear.

Lin R, Louis TA, Paddock S, Ridgeway G (2006). Loss Function Based Ranking in Two-Stage, Hierarchical
Models. Bayesian Analysis, 1: 915-946.

Lin R, Louis TA, Paddock S, Ridgeway G (2009). Ranking USRDS, provider-specific SMRs from
1998–2001. Health Services Outcomes and Research Methodology, 9: 22-38.

Louis TA, Li Q, Carvalho, B, Fallin MD, Irizarry RA, Rucziknski I (2010). Association Tests that
Accommodate Genotyping Errors. Bayesian Statistics, 9, Oxford University Press, to appear.

Mwambi HG, Louis TA, Edmore R (2010). Joint Inference Regions for Longitudinally Observed Bivariate
Clinical Measurements. In preparation.

Paddock SM, Ridgeway G, Lin R, Louis TA (2006). Flexible Prior Distributions for Triple-Goal Estimates in
Two-Stage Hierarchical Models. Computational Statistics and Data Analysis, 50: 3243-3262.

Tarone RE (1982). The use of historical control information in testing for a trend in proportions.
Biometrics 38: 215-220.

Bayes, why bother? 45/46 T. A. Louis: Johns Hopkins Biostatistics & Census Bureau



The general hierarchical model

[θ | η] ∼ g(·|η) Prior

[Y|θ] ∼ f (y|θ) Likelihood

g(θ|y, η) =
f (y|θ)g(θ|η)

fG (y|η)
Posterior

fG (y|η) =

∫
f (y|θ)g(θ|η)dθ Marginal

Or, Bayes empirical Bayes via a hyper-prior (H),

g(θ|y) =

∫
g(θ|y,η)h(η|y)dη
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