Getting to know your variables

Jane E. Miller, PhD

Why is it important to get to know your variables?

- Each variable measures
 - A specific concept
 - Numeric values have particular meanings that differ depending on the nature of that concept
 - In a particular context
 - Place, time, and group to whom do the #s pertain
 - In specific units
 - Collected with a particular study design
 - Affects prevalence of and reasons for missing values

Example of failing to get to know variables

- In a nationally representative survey sample from a developing country circa 2002.
 - Data set downloaded from a research data web site; not cleaned or evaluated before use.
 - Birth weight in grams observed range up to 9999 with a mean of 8000
- **First red flag**: Implausible as an actual birth weight, given its meaning and units. 9,999 grams ~= 22 lbs.
 - 9999 was a code for missing value
- **Lesson**: Must become familiar with what a particular value means for that concept, context and units.

Second red flag

- 2/3 of sample had a birth weight value of 9999
 - Very high value for a substantial share of the sample
 - Unlikely to be explained solely by
 - outliers
 - data entry errors
- **Lesson**: Look at study documentation and questionnaire to find out why this distribution was observed.
 - Occurred due to a skip pattern designed to minimize recall bias in birth weight reporting.

Resources needed for this exercise

- Documentation on the data source
 - Description of study design
 - Questionnaire
 - Codebook for electronic data file
- Electronic file of database
- Statistical software
- Research question
- Articles, books, etc. on the topic
 - Dependent and key independent variables

Attributes of data and variables to become familiar with **prior to analysis**
Analytic sample

- **Before** becoming acquainted with variables in the analysis, impose any **limits on the analytic sample** related to the research question.
- **Exclude cases**
 - to whom the topic does not pertain
 - that are part of a group with too few cases
 - for whom a key variable was not collected

Context of measurement

- **When, where, who**, e.g., family income will be
 - Higher **now** than it was 200 years ago in a given place and group
 - Higher in a currently **developed** than **developing** country
 - Higher in a sample of **all households** than in a sample of **low-income households**

Unit of analysis

- Do data pertain to
 - Individual person?
 - Family?
 - Census tract?
 - Institution?

- Knowing **unit of analysis** helps ascertain plausible range of values
 - e.g., number of persons in a family will be much lower than the population of a census tract or a school

Labeling, coding, and missing value information for the variables

- To help create a comprehensive record of information on each of the variables in the analysis, fill out a grid like this one, which is available online.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Variable label</th>
<th>Type of variable</th>
<th>Coding/Units</th>
<th>Missing value codes</th>
<th>Skip pattern?</th>
<th>Original or created variable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOCLY</td>
<td>Saw doctor last year</td>
<td>Nominal</td>
<td>1 = yes 2 = no</td>
<td>1, 2</td>
<td>None</td>
<td>Original</td>
</tr>
<tr>
<td>BWGRMS</td>
<td>Birth weight</td>
<td>Ratio</td>
<td>Grams</td>
<td>0–6000</td>
<td>9999 = missing</td>
<td>Asked only about children < age 5 years.</td>
</tr>
</tbody>
</table>

Level of measurement

- **Categorical variables** are classified into categories or ranges.
 - Nominal, e.g., gender, race
 - Ordinal, e.g., age group, income range

- **Continuous variables**
 - Measured in numeric units, but not grouped.
 - Two types of continuous variables:
 - **Interval**
 - Zero is **not** lowest possible value
 - e.g., temperature °Fahrenheit
 - **Ratio**
 - Zero is lowest possible value
 - e.g., temperature °Kelvin, height, weight

Helps to anticipate limits on range of values

Units of measurement

- **System of measurement**: Metric, British or other?
 - E.g., income in **dollars** or **Euros** or **yen**?

- **Level of aggregation**
 - E.g., income per **hour** or per **week** or per **year**?

- **Scale**
 - E.g., income in dollars or **thousands** of dollars or **millions** of dollars?
Missing values

- Missing values on a variable can occur because they are
 - Not applicable for some respondents
 - Missing by design (e.g., modules given only to a subset of the overall sample)
 - Item non-response
- Identify missing values as such in the electronic database, so they are treated correctly during analysis.

Plausible values for the concept being measured

A value of 10,000

- **Makes sense** in at least some contexts for
 - Annual family income in dollars
 - Population of a census tract
 - An annual death rate per 100,000 persons
- **Does NOT make sense** for
 - Hourly income in dollars
 - Height of a person, in inches
 - Number of persons in a family
 - A Likert scale item
 - A proportion
 - An annual death rate per 1,000 persons

Another example of plausible values

A value of -1

- **Makes sense** in at least some contexts for
 - Temperature in degrees Fahrenheit or Celsius
 - Change in rating on a 5 point scale
 - Change in death rate per 100,000 persons
 - Percentage change in annual family income
- **Does NOT make sense** for
 - Temperature in degrees Kelvin
 - Number of persons in a family
 - A Likert scale item
 - A proportion

Becoming acquainted with the concepts under study

- To identify plausible ranges of values for each of the dependent and key independent variables, read the literature.
- **Definitional limits**
 - E.g., a proportion of a whole must fall between 0 and 1
- **Conceptually plausible range**
 - E.g., birth weight must be positive but low enough that an infant of that size could conceivably be born!
- **Context** of measurement (who, when, where)

Descriptive statistics

- **After**
 - Imposing restrictions on analytic sample
 - Filling in missing value codes for each variable
- Complete a grid of d-statistics on each variable to compare across
 - Analytic data set
 - Codebook
 - Articles or books on the topic

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Not valid cases for that variable (incl. missing values)</th>
<th>Observed values from analytic variables</th>
<th>Descriptive variables</th>
<th>Reference values from codebook</th>
<th>For categorical variables: Distribution</th>
<th>Frequency distribution</th>
<th>Values & range consistent w/ codebook</th>
</tr>
</thead>
</table>

Check each distribution against the codebook for the original source

- Check the distribution of values observed in the analytic sample for each variable against the codebook for the data set.
 - range and/or mean values for continuous variables
 - frequency distribution of categorical variables
 - # cases with missing values, by reason for missing value
- If any distributions are inconsistent, do NOT analyze the data until discrepancies are resolved!
Check each distribution against the *literature* on similar variables

- Track down information in the *published literature* on each of the main variables for a *similar population*.
- If the values in the *data* are *substantially different from those used in other studies* of the same concepts, do **NOT** analyze the data until discrepancies are resolved!

Identify reasons for inconsistencies

- Explain possible reasons for discrepancies between their data and similar data sets, e.g.,:
 - *Population studied*, e.g., substantially different time, place, and/or subgroup
 - *Units of analysis*, e.g., family instead of individual
 - *Units of measurement*, e.g., metric instead of British units
 - *Scale*, e.g., grams instead of kilograms
 - *Transformations of the variables*, e.g., percentiles instead of original value

Reasons for getting to know your variables, redux

- These attributes of the analytic sample and variables are essential information for
 - *Data preparation*
 - Inclusion criteria for the analytic sample
 - Creation of new variables
 - Choice of pertinent descriptive and multivariate *statistics*
 - Design of correct *charts and tables*
 - Writing correct *prose*
- **Even experienced researchers** should complete this assignment when undertaking a project with a *new topic* or *data set*.

Exercise yields key information for a research paper on the topic

- *Reading the literature* on the *topic* yields information needed for the
 - *introduction*
 - *literature review*
 - *discussion sections* of a paper
- Detailed knowledge of *study design* and *variables* from *documentation, questionnaire* and *codebook* provides information needed in the
 - *data and methods*
 - *results sections* of a paper

Suggested readings

 - chapter 4 on levels of measurement, units, standards and cutoffs
 - chapters 7 and 10 on choice of contrasts to suit the variable
 - chapter 13 on data and methods
 - chapters 4 and 13 on missing values and missing by design
 - study design, conceptualization, and measurement

Suggested online resources

Suggested podcasts:
- Reporting one number (re: units)
- Comparing two numbers or series of numbers (re: levels of measurement)
- Defining the Goldilocks problem

Contact information

Institute for Health, Health Care Policy and Aging Research
Rutgers University
112 Paterson Street
New Brunswick NJ 08901
jmiller@ifh.rutgers.edu
(848) 932-6730