2

4

Confidence Intervals

Confidence intervals are arguably the simplest and easiest way to show sampling error. Generating confidence intervals on a common outcome for two groups allows us to see if the difference in means is statistically-significant. Excel doesn't have a command to generate confidence intervals for one or two groups. It doesn't have a simple way of creating a graphic. These slides show how to do it all using Excel and an Excel template.

Approach

3

- This presentation assumes that summary statistics on an outcome (average or proportion, sample size and standard deviation) are available for two subgroups.
- 2. Given these statistics, the Margin of Error and associated confidence intervals can be generated.
- 3. Non-overlapping confidence intervals indicate statistical-significance. But this may be hard to see.
- 4. Excel can be used to generate visual display of confidence intervals. This involves some unusual uses of Excel. This will be shown in the next slides.

Excel Template

- 1. An Excel template is available that converts summary statistics for two groups into two horizontal bars symbolizing the associated confidence intervals.
- 2. Whether or not the bars overlap or touch is easily seen and can be copied into a document or slide.
- 3. Download a template from www.StatLit.org/Excel/ Display-Confidence-Intervals-2Group-Excel-2003.xls
- 4. This template works with Excel 2003 and subsequent versions. It does not have any macros.

	Input for l	Propo	ortion	S
0.950	Confidence Level			Manua
Gals who	Work	Guys wh	Guys who Work	
40.0%	p = proportion	55.0%	р	Manua
84	Sample Size	100	Count	Manua
49.0%	SD=Std. Deviation	49.7%	SD	
2.283	t = TINV(p, df)	2.276	t-critical	
12.2%	ME = t*StdDev/Sqrt(n)	11.4%	ME	
27.8%	CI-Lower = Ave - ME	43.6%	CI-Lower	
52 2%	CI-Upper = Ave + ME	66.4%	CI-Upper	

				7		
Input for Averages						
0.950	Confidence Level	•		Manual		
Male Height		Female Height				
69.0	Average	65.0	Average	Manual		
4.0	SD=Std. Deviation	3.0	SD	Manual		
16	Sample Size	16	Count	Manual		
2.13	t = TINV(p, df)	2.13	t-critical			
2.1	ME = t*StdDev/Sqrt(n)	1.6	ME			
66.9	CI-Lower = Ave - ME	63.4	CI-Lower			
	CLUpper = Ave + ME	66.6	CI-Hpper			

