Getting Ready for Big Data

Implications for intro stats

Bob Stine
Department of Statistics, Wharton
www-stat.wharton.upenn.edu/~stine
Change is upon us...

- Session topics
 - Shifting away from classical methods
 - Communication skills
 - Data visualization
 - Business analytics
 - Predictive analytics
 - Sports analytics
 - Analytics in curriculum

- Rather than discuss BA course, consider implications of ‘big data’ for intro courses
Big Data?

- **Examples**
 - Scanner data captured at retail transaction
 - Credit card, financial transactions
 - Health records and genetic testing
 - Social media, web visits

- **Characteristics**
 - Volume, variety, velocity, veracity…
 - Often not collected with stat in mind
Big Data?

• Examples
 • Scanner data captured at retail transaction
 • Credit card, financial transactions
 • Health records and genetic testing
 • Social media, web visits

• Characteristics
 • Volume, variety, velocity, veracity…
 • Often not collected with stat in mind

• Oops, we’re not in Kansas anymore
Big Data Changes Things

- Huge number of observations
 - All patient outcomes for a state in a year, all sales transactions, every web query…

→ ‘Everything’ seems statistically significant.
 p-values ≈ 1.0e-122
Big Data Changes Things

• Huge number of observations
 • All patient outcomes for a state in a year, all sales transactions, every web query…

 ➜ ‘Everything’ seems statistically significant.
 \[p\text{-values} \approx 1.0\times 10^{\text{-122}} \]

• But…
 • Effect size
 Substantive versus statistical significance
 • Dependence
 Are those observations independent? Hurricane versus car insurance
 Behavior of credit markets, mortgages in 2008
Big Data Changes Things

• Data snooping, hypothesis discovery
 • Wide data sets offer many choices
 • Find important sales patterns
 • Beer and diapers

→ Model fits data very well
Big Data Changes Things

• Data snooping, hypothesis discovery
 • Wide data sets offer many choices
 • Find important sales patterns
 • Beer and diapers

 ➜ Model fits data very well

• Multiplicity
 • Look for items bought together in scanner data
 1000 items produces 500,000 pairs
 • Voter surveys include 1000s of questions related to preferences
Implications for Intro Stat

• Most students will have only one or maybe two semester exposure to statistics

• Promotional opportunity
 • Attract some to more majors
 • Provide practical knowledge for others

• Address issues for big data in this context
 • Dependence
 • Multiplicity
 • Effect size
 • Others

Zero-sum game
Getting Ready for Big Data

• Have a question to motivate, guide, control the modeling, statistical analysis
 • What question are we trying to answer?
 • Too easy to spend hours wandering in big data without a clear objective
Getting Ready for Big Data

- Have a question to motivate, guide, control the modeling, statistical analysis
 - What question are we trying to answer?
 - Too easy to spend hours wandering in big data without a clear objective

- Importance in intro courses
 - Why am I doing this? Who cares? Why does this matter?
 - Common metaphors ‘TST’, ‘MMMM’
Getting Ready for Big Data

• Data is happy to generate many, many hypotheses
 • Testing response to stimulus letters
 • Multiplicity (simultaneous inference)
Getting Ready for Big Data

• Data is happy to generate many, many hypotheses
 • Testing response to stimulus letters
 • Multiplicity (simultaneous inference)

• Importance in intro courses
 • Examples for regression models
 Stock market
 • Simple remedies are easy to teach
 (e.g. Bonferroni p-values)
Others have noticed...

xkcd

JELLY BEANS CAUSE ACNE!
SCIENTISTS! INVESTIGATE!

WE FOUND NO LINK BETWEEN JELLY BEANS AND ACNE (P > 0.05).

THAT SETTLES THAT.
I HEAR IT'S ONLY A CERTAIN COLOR THAT CAUSES IT.

SCIENTISTS!

[Panel 1: Character say, "JELLY BEANS CAUSE ACNE!"
Character holds a jar of jelly beans.

Panel 2: Character say, "WE FOUND NO LINK BETWEEN JELLY BEANS AND ACNE (P > 0.05)."
Character sits at a desk with a stack of papers.

Panel 3: Character say, "THAT SETTLES THAT."
Character holds a chart with a bar graph.
]
Others have noticed...

xkcd
Others have noticed...

- Source of publication bias in journals
- Economist article
Getting Ready for Big Data

- 'Big Data' don’t always measure what you think they measure
 - Units, time lags, codebooks
 - Data preparation is key (95% rule)
 - Mailing list example is full of these problems
Getting Ready for Big Data

• ‘Big Data’ don’t always measure what you think they measure
 • Units, time lags, codebooks
 • Data preparation is key (95% rule)
 • Mailing list example is full of these problems

• Importance in intro courses
 • Give students data that is more realistic
 Missing values, vague definitions
 • Too much, too soon?
Getting Ready for Big Data

• Large data sets typically gathered as part of transaction processing, not for analysis
 • Repurposed accounting records
 • Justify that sparkling new data warehouse
Getting Ready for Big Data

• Large data sets typically gathered as part of transaction processing, not for analysis
 • Repurposed accounting records
 • Justify that sparkling new data warehouse

• Importance in intro courses
 • Always ask
 “What would be the ideal data to answer my question?”
 • Compare that to the data that you have
Getting Ready for Big Data

- Dependence often makes large data sets much smaller
 - Predicting credit behavior in US: dep customers
 - Repeated measurements (longitudinal)
Getting Ready for Big Data

• Dependence often makes large data sets much smaller
 • Predicting credit behavior in US: dep customers
 • Repeated measurements (longitudinal)

• Importance in intro courses
 • Carefully define assumption of independent observations
 • Divisor n is not number of cases, but ind cases
 • Relevant source of variation
 • Common examples: ‘lurking variable’
Getting Ready for Big Data

- Results may not generalize
 - On-line experiment on weekday not descriptive of weekend (Can imagine other factors)
 - Text model of one author not applicable to others
 - Transfer learning problem
Getting Ready for Big Data

• Results may not generalize
 • On-line experiment on weekday not descriptive of weekend (Can imagine other factors)
 • Text model of one author not applicable to others
 • Transfer learning problem

• Importance in intro courses
 • Sampling from what population?
 • Does same population exist? ‘Population drift’
 • Dynamics of election polls
Place for Classical Methods

- Surveys and sampling still make sense
 - Billions of credit card transactions each year
 - Do you need to see them all to track prices?
 - DoE analysis of prices for ethanol fuels

- Experimental design remains essential
 - Hard to beat that randomized experiment
 - Google ad response measurement
 - Trivial to do experiment

- Generalize?
Thanks!