Lognormal Distribution of Subjects by Income

Milo Schield

Augsburg College Editor: www.StatLit.org US Rep: International Statistical Literacy Project

www.StatLit.org/

pdf/2014-Schield-LogNormal-Income2-Excel2013-Slides.pdf Excel/2014-Schield-LogNormal-Income2-Excel2013-Data.xlsx

Log-Normal Distributions

The lognormal is positive, has a single peak and is rightskewed so mode < median < mean.

Examples of **things** distributed log-normally:

- Incomes, assets, size of cities, size of insurance claims
- Weight and blood pressure of humans (by gender)

Money is different, we ...

- don't care how total weight is distributed by person weight.
- do care how total income is distributed by HH income.
 This worksheet distributes both: things and money.

Note: HH stands for Household.

A Log-Normal distribution is simply the log of the normal.

Assignment No graphs!

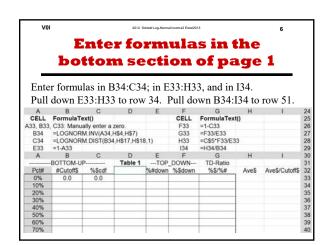
Enter formulas. Check results against demo.pdf

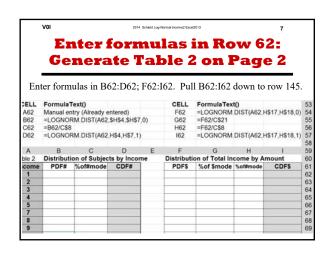
Shortcut: Rather than type long formulas, do this:

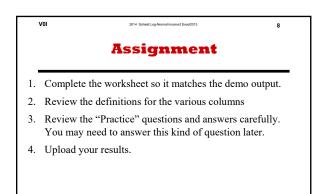
- Copy the formula to the clipboard, and paste it into the desired box.
- Edit the new formula, remove the leading single quote, and press enter. This eliminates errors!

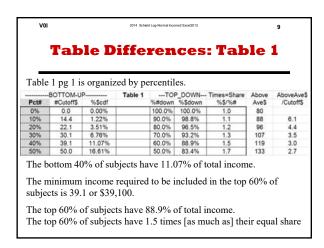
Review definitions of various column headings. Study the answers to practice questions!!! You made need to answer this kind of question later.

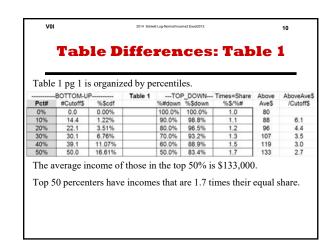
Enter data and formulas in the top section of page 1 Enter 50 (median income) and 80 (mean income) in C4 & C5. Enter formulas in H4:H7. Enter formulas in C7:C11.

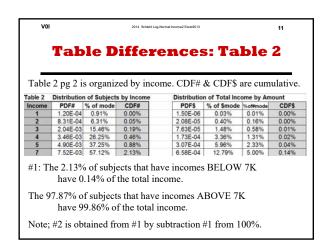

Enter formulas in H4:H7. Enter formulas in C7:C11.

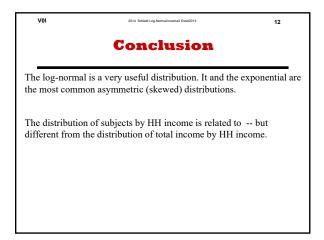

Check values against demo output.


C D E F G H I


og-No	ormal Distribution	House	holds Normal	Distribution
50		mu		=LN(C4)
80		mu+S^	2/2	=LN(C5)
		Sigma ^a	2	=2*(H5-H4)
	=EXP(H4-H6)	Sigma		=SQRT(H6)
	=LOGNORM.DIST(C	7,H4,H7,0)		
	=SQRT((EXP(H6)-1)*			
	=NORM.S.DIST(SQR	RT(LN(C5/C4)/2),	1)	
	=2*NORM.S.DIST(H7	//SQRT(2),1)-1		


Enter formulas in the middle section of page 1 Enter formulas in H17:H20, C17:C18, and in C20:C23. Check results against demo output. D E F a Log-Normal distribution by Income with mu# and sigma#, it follows that 14 has a Log-Normal Distribution by HH Income [Aitchinson & Brown (1963)] eters mu\$ = (mu# + sigma#^2) and sigma\$ = sigma# ne Log-Normal Distribution Total Income Normal Distribution 16 17 =EXP(H17) 4.852 =H4+H6 mu\$ 205 =EXP(H20) 0.970 18 Sigma\$ 0.940 =H18^2 19 Sigma\$^2 =EXP(H17-H19) 5.322 =H17+H19/2 20 mu\$+S\$^2/2 5.14E-03 =LOGNORM.DIST(C20,H17,H18,0) =C18*SQRT(((C18/C17)^2)-1) =1-NORM.DIST(LN(C5),H17,H18,1) 22 0.686 24 D





Lognormal Distribution of Subjects by Income

Milo Schield

Augsburg College

Editor: www.StatLit.org

US Rep: International Statistical Literacy Project

www.StatLit.org/

pdf/2014-Schield-LogNormal-Income2-Excel2013-Slides.pdf Excel/2014-Schield-LogNormal-Income2-Excel2013-Data.xlsx

Log-Normal Distributions

The lognormal is positive, has a single peak and is rightskewed so mode < median < mean.

Examples of **things** distributed log-normally:

- Incomes, assets, size of cities, size of insurance claims
- Weight and blood pressure of humans (by gender)

Money is different, we ...

- don't care how total weight is distributed by person weight.
- do care how total income is distributed by HH income. This worksheet distributes both: **things** and **money**.

Note: HH stands for Household.

A Log-Normal distribution is simply the log of the normal.

Assignment No graphs!

Enter formulas. Check results against demo.pdf

Shortcut: Rather than type long formulas, do this:

- Copy the formula to the clipboard, and paste it into the desired box.
- Edit the new formula, remove the leading single quote, and press enter. This eliminates errors!

Review definitions of various column headings. Study the answers to practice questions!!! You made need to answer this kind of question later.

Enter data and formulas in the top section of page 1

Enter 50 (median income) and 80 (mean income) in C4 & C5. Enter formulas in H4:H7. Enter formulas in C7:C11. Check values against demo output.

С	D	E	F	G	Н	I	1
have a Log-l	Normal Disti	ibution by	Income.				2
ds Log-Nor	mal Distrib	ution		Households	Normal D	istribution	3
50				mu		=LN(C4)	4
80				mu+S^2/2		=LN(C5)	5
				Sigma ²		=2*(H5-H4)	6
	=EXP(H4-F	16)		Sigma		=SQRT(H6)	7
	=LOGNOR	M.DIST(C	7,H4,H7,0)			8
	=SQRT((E)	(P(H6)-1)*	EXP(2*H4	+H6))			9
	=NORM.S.	DIST(SQR	T(LN(C5/	C4)/2), 1)			10
	=2*NORM.	S.DIST(H7	'/SQRT(2)	,1)-1			11

Enter formulas in the middle section of page 1

Enter formulas in H17:H20, C17:C18, and in C20:C23. Check results against demo output.

С	D	Е	F	G	Н	1	12				
a Log-Normal distribution by Income with mu# and sigma#, it follows that											
e has a Log-Normal Distribution by HH Income [Aitchinson & Brown (1963)]											
eters mu\$ = (mu# + sigma	#^2) and	sigma\$ = s	sigma#			15				
me Log-Norr	nal Distribu	tion		Total Income	Normal	Distribution	16				
128	=EXP(H17)			mu\$	4.852	=H4+H6	17				
205	=EXP(H20)			Sigma\$	0.970	=H7	18				
				Sigma\$^2	0.940	=H18^2	19				
50.0	=EXP(H17-F	119)		mu\$+S\$^2/2	5.322	=H17+H19/2	20				
5.14E-03	=LOGNORN	1.DIST(C2	20,H17,H18	,0)			21				
255.8	=C18*SQRT	(((C18/C1	17)^2)-1)				22				
0.686	=1-NORM.DIST(LN(C5),H17,H18,1)										
С	D	Е	F	G	Н		24				

Enter formulas in the bottom section of page 1

Enter formulas in B34:C34; in E33:H33, and in I34.

Pull down E33:H33 to row 34. Pull down B34:I34 to row 51.

Α	В	С	D	E	F	G	Н	1	24
CELL	FormulaTe	ext()			CELL	FormulaText	()		25
A33, B33,	C33: Manua	ally enter a	zero.		F33	=1-C33			26
B34	=LOGNOR	M.INV(A34,I	H\$4,H\$7)		G33	=F33/E33			27
C34	=LOGNOR	M.DIST(B34	,H\$17,H\$18	3, <mark>1)</mark>	H33	=C\$5*F33/E33	3		28
E33	=1-A33				134	=H34/B34			29
Α	В	С	D	Е	F	G	Н	1	30
	BOTTOM-U	P	Table 1	TOP	_DOWN	TD-Ratio			31
Pct#	#Cutoff\$	%\$cdf		%#down	%\$down	%\$/%#	Ave\$	Ave\$/Cutoff\$	32
0%	0.0	0.0							33
10%									34
20%									35
30%									36
40%									37
50%									38
60%									39
70%									40

Enter formulas in Row 62: Generate Table 2 on Page 2

Enter formulas in B62:D62; F62:I62. Pull B62:I62 down to row 145.

CELL	FormulaT	ext()			CELL	FormulaTex	t()		5
A62	Manual ent	ry (Already	entered)		F62	=LOGNORM.	DIST(A62,	H\$17,H\$18,0)	5
B62	=LOGNOR	M.DIST(A62	,\$H\$4,\$H\$7	,0)	G62	=F62/C\$21			5
C62	=B62/C\$8				H62	=F62/C\$8			5
D62	=LOGNOR	M.DIST(A62	,H\$4,H\$7,1)		162	=LOGNORM.	DIST(A62,	H\$17,H\$18,1)	5
									5
Α	В	С	D	Е	F	G	Н	1	5
ble 2	Distribution	on of Subjec	ts by Incor	ne	Distributi	on of Total In	come by A	mount	6
come	PDF#	%of#mode	CDF#		PDF\$	%of \$mode	%of#mode	CDF\$	6
1									6
2									6
3									64
4									6
5									66
7									6
8									68
9									69

Assignment

- 1. Complete the worksheet so it matches the demo output.
- 2. Review the definitions for the various columns
- 3. Review the "Practice" questions and answers carefully. You may need to answer this kind of question later.
- 4. Upload your results.

Table Differences: Table 1

Table 1 pg 1 is organized by percentiles.

	BOTTOM-UI	P	Table 1	TOF	DOWN	Times=Share	Above	AboveAve\$
Pct#	#Cutoff\$	%\$cdf		%#down	%\$down	%\$/%#	Ave\$	/Cutoff\$
0%	0.0	0.00%		100.0%	100.0%	1.0	80	
10%	14.4	1.22%		90.0%	98.8%	1.1	88	6.1
20%	22.1	3.51%		80.0%	96.5%	1.2	96	4.4
30%	30.1	6.76%		70.0%	93.2%	1.3	107	3.5
40%	39.1	11.07%		60.0%	88.9%	1.5	119	3.0
50%	50.0	16.61%		50.0%	83.4%	1.7	133	2.7

The bottom 40% of subjects have 11.07% of total income.

The minimum income required to be included in the top 60% of subjects is 39.1 or \$39,100.

The top 60% of subjects have 88.9% of total income.

The top 60% of subjects have 1.5 times [as much as] their equal share

Table Differences: Table 1

Table 1 pg 1 is organized by percentiles.

	BOTTOM-U	P	Table 1	TOF	_DOWN	Times=Share	Above	AboveAve\$
Pct#	#Cutoff\$	%\$cdf		%#down	%\$down	%\$/%#	Ave\$	/Cutoff\$
0%	0.0	0.00%		100.0%	100.0%	1.0	80	
10%	14.4	1.22%		90.0%	98.8%	1.1	88	6.1
20%	22.1	3.51%		80.0%	96.5%	1.2	96	4.4
30%	30.1	6.76%		70.0%	93.2%	1.3	107	3.5
40%	39.1	11.07%		60.0%	88.9%	1.5	119	3.0
50%	50.0	16.61%		50.0%	83.4%	1.7	133	2.7

The average income of those in the top 50% is \$133,000.

Top 50 percenters have incomes that are 1.7 times their equal share.

Table Differences: Table 2

Table 2 pg 2 is organized by income. CDF# & CDF\$ are cumulative.

Table 2	Distribution of Subjects by Income			•	Distribution	n of Total Inco	ome by An	nount
Income	PDF#	% of mode	CDF#		PDF\$	% of \$mode	%of#mode	CDF\$
1	1.20E-04	0.91%	0.00%		1.50E-06	0.03%	0.01%	0.00%
2	8.31E-04	6.31%	0.05%		2.08E-05	0.40%	0.16%	0.00%
3	2.04E-03	15.46%	0.19%		7.63E-05	1.48%	0.58%	0.01%
4	3.46E-03	26.25%	0.46%		1.73E-04	3.36%	1.31%	0.02%
5	4.90E-03	37.25%	0.88%		3.07E-04	5.96%	2.33%	0.04%
7	7.52E-03	57.12%	2.13%		6.58E-04	12.79%	5.00%	0.14%

- #1: The 2.13% of subjects that have incomes BELOW 7K have 0.14% of the total income.
- The 97.87% of subjects that have incomes ABOVE 7K have 99.86% of the total income.
- Note; #2 is obtained from #1 by subtraction #1 from 100%.

Conclusion

The log-normal is a very useful distribution. It and the exponential are the most common asymmetric (skewed) distributions.

The distribution of subjects by HH income is related to -- but different from the distribution of total income by HH income.