4

Exploring **Lognormal Incomes**

1C

1C

Milo Schield Augsburg College Editor: www.StatLit.org US Rep: International Statistical Literacy Project 11 October 2014

National Numeracy Network

www.StatLit.org/pdf/2014-Schield-NNN2-Slides.pdf www.StatLit.org/Excel/Create-LogNormal-Incomes-Excel2013.xlsx

2014 NNN2 **Log-Normal Distributions**

A Log-Normal distribution is generated from a normal with mu = Ln(Median) and sigma = Sqrt[2*Ln(Mean/Median)]. The lognormal is always positive and right-skewed. Examples:

- Incomes (bottom 97%), assets, size of cities
- Weight and blood pressure of humans (by gender)

Benefit:

1C

1C

1

3

- calculate the share of total income held by the top X%
- calculate Gini Coefficient,
- · explore effects of change in mean-median ratio.

2014 NNN2 **Log-Normal Distributions**

"In many ways, it [the Log-Normal] has remained the Cinderella of distributions, the interest of writers in the learned journals being curiously sporadic and that of the authors of statistical test-books but faintly aroused."

"We ... state our belief that the lognormal is as fundamental a distribution in statistics as is the normal, despite the stigma of the derivative nature of its name."

Aitchison and Brown (1957). P 1.

Lognormal and Excel

2014 NNN2

Use Excel to focus on the model and the results. Excel has two Log-Normal functions: Standard: =LOGNORM.DIST(X, mu, sigma, k) k=0 for PDF; k=1 for CDF. Inverse: =LOGNORM.INV(X, mu, sigma) Use Standard to calculate/graph the PDF and CDF. Use Inverse to find cutoffs: quartiles, to 1%, etc. Use Excel to create graphs that show comparisons.

7

1C

For anything that is distributed by X, there are always two distributions:

1. Distribution of subjects by X

1C

2. Distribution of total X by X.

Sometime we ignore the 2nd: height or weight. Sometimes we care about the 2nd: income or assets.

Surprise: If the 1st is lognormal, so is the 2nd.

Distribution of Households and Total Income by Income

2014 NNN2

Suppose the distribution of households by income is log-normal with normal parameters mu# and sigma#.

Then the distribution of total income by amount has a log-normal distribution with these parameters: $mu\$ = mu# + sigma#^2; sigma\$ = sigma#.$

See Aitchison and Brown (1963) p. 158. Special thanks to Mohammod Irfan (Denver University) for his help on this topic.

•

	1C		2014 N	NN2	13						
	As	Mea	n-Me	diar	n Rati	o 1					
Rich get Richer (or vice-versa)											
	Log-normal distribution. Median HH income: \$50K.										
		Тор	o 5%	Тор	1%						
	Mean#	Min\$	%Income	Min\$	%Income	Gini					
	55	103	11%	138	2.9%	0.24					
	60	135	15%	204	4.2%	0.33					
	65	165	18%	270	5.5%	0.39					
	70	193	20%	337	6.6%	0.44					
	75	220	23%	406	7.7%	0.48					
	80	246	25%	477	8.7%	0.51					
	85	272	27%	549	9.7%	0.53					
	90	298	29%	623	10.7%	0.56					

Median	fixed at	\$50K		Top 5%	6 Househol	ds
Median	Ratio	Mean#	Mode#	Min\$	%Income	Gini
50	1.2	60	35	135	15%	0.33
50	1.3	65	30	165	18%	0.39
50	1.4	70	26	193	20%	0.44
50	1.5	75	22	220	23%	0.48
50	1.6	80	20	246	25%	0.51
50	1.7	85	17	272	27%	0.53
50	1.8	90	15	298	29%	0.56

2014 NNN2

--

1C

80 85

173

187

38%

40%

1C		15									
A	ls M	ean-	Medi	an 1	ratio d	Se .					
Median î, Mode may increase											
Top 5%											
Median	Ratio	Mean#	Mode#	Min\$	%Income	Gini					
40	1.2	48	28	108	15%	0.33					
50	1.3	65	30	165	18%	0.39					
60	1.4	84	31	231	20%	0.44					
70	1.5	105	31	308	23%	0.48					
80	1.6	128	31	394	25%	0.51					
90	1.7	153	31	490	27%	0.53					
100	1.8	180	31	595	29%	0.56					
	What does this mean?										

	1C			2014 NNN2		16	16				
S	ihar	e of	f Top	10%,	Bot	tom	40%	D			
	and their Palma Ratio										
Pa	alma rat	tio: [Sł	nare of to	p10%]/[Share of	f botton	ı 40%].				
C	obham	and Su	imner (20	14) argue	e that the	e Palma	ratio is	а			
m	ore und	lerstan	dable mea	asure of i	nequalit	y than t	he Gini				
		Top	0 10%	Bottom	40%			[
	Mean#	Min\$	%Income	Max\$	%Income	Palma	Gini				
	55	87	20%	45	25%	0.8	0.24				
	60	108	25%	43	20%	1.3	0.33				
	65	127	29%	42	16%	1.8	0.39				
	70	143	32%	41	14%	2.3	0.44				
	75	159	35%	40	12%	2.8	0.48				

39

39

Median Income: \$50K

11%

10%

3.4

4.0

0.51

0.53

1C				2014 NNN2		17								
Sh	Share of Top 10%, Bottom 40% and their Palma Ratio													
Palm when	Palma and Gini are independent of the Median Income when the Mean-Median Income ratio is constant.													
			Тор	0 10%	Bottom	40%								
Median	Ratio	Mean#	Min\$	%Income	Max\$	%Income	Palma	Gini						
40	1.5	60	127	35%	32	12%	2.83	0.48						
50	15	75	159	35%	40	12%	2.83	0.48						

50	1.5	75	159	35%	40	12%	2.83	0.48
60	1.5	90	190	35%	48	12%	2.83	0.48
70	1.5	105	222	35%	56	12%	2.83	0.48
80	1.5	120	254	35%	64	12%	2.83	0.48
90	1.5	135	285	35%	72	12%	2.83	0.48
100	1.5	150	317	35%	80	12%	2.83	0.48
Constant	Mean-	Median	Ratio					

2014 NNN2 Which parameters best model **US household incomes?**

19

US Median Income (Table 691*) • \$46,089 in 1970; \$50,303 in 2008

Share of Total Income by Top 5% (Table 693*) • 16.6% in 1970; 21.5% in 2008

Best log-normal fits:

10

- 1970 Median 46K, Mean 53K: Ratio = 1.15
- 2008 Median 50K, Mean 73K; Ratio = 1.46
- * 2011 US Statistical Abstract (2008 dollars).

What are some other causes of income differences?

2014 NNN2 **Explore the Causes** of Income Differences

1C

Type of Household	Lowest fifth	Second fifth	Middle fifth	Fourth fifth	Highest fifth	Тор 5%
Married couple families	17%	36%	48%	65%	78%	82%
Single-male family	4%	6%	6%	5%	4%	2%
Single-female family	20%	17%	14%	9%	5%	4%
Non-family households	60%	42%	32%	21%	13%	12%
TOTAL	100%	100%	100%	100%	100%	100%
Mean # of income earners	0.4	0.9	1.3	1.7	2	2.1

2014 NNN2 1C 23 Conclusion Using the LogNormal distributions provides a principled way students can explore a plausible distribution of incomes. Allows students to explore the difference between part and whole when using percentage grammar.

Exploring Lognormal Incomes

Milo Schield

Augsburg College Editor: www.StatLit.org US Rep: International Statistical Literacy Project 11 October 2014 National Numeracy Network www.StatLit.org/pdf/2014-Schield-NNN2-Slides.pdf www.StatLit.org/Excel/Create-LogNormal-Incomes-Excel2013.xlsx

Log-Normal Distributions

A Log-Normal distribution is generated from a normal with mu = Ln(Median) and sigma = Sqrt[2*Ln(Mean/Median)]. The lognormal is always positive and right-skewed. Examples:

- Incomes (bottom 97%), assets, size of cities
- Weight and blood pressure of humans (by gender)

Benefit:

- calculate the share of total income held by the top X%
- calculate Gini Coefficient,
- explore effects of change in mean-median ratio.

2

Log-Normal Distributions

"In many ways, it [the Log-Normal] has remained the Cinderella of distributions, the interest of writers in the learned journals being curiously sporadic and that of the authors of statistical test-books but faintly aroused."

"We ... state our belief that the lognormal is as fundamental a distribution in statistics as is the normal, despite the stigma of the derivative nature of its name."

Aitchison and Brown (1957). P 1.

Lognormal and Excel

Use Excel to focus on the model and the results. Excel has two Log-Normal functions:

- Standard: =LOGNORM.DIST(X, mu, sigma, k) k=0 for PDF; k=1 for CDF.
- Inverse: =LOGNORM.INV(X, mu, sigma)

Use Standard to calculate/graph the PDF and CDF.

- Use Inverse to find cutoffs: quartiles, to 1%, etc.
- Use Excel to create graphs that show comparisons.

Distribution of annual household income in the United States (2012 estimate)

Source: U.S. Census Bureau, Current Population Survey, 2012 Annual Social and Economic Supplement

households

Log-Normal Distribution of Units

Paired Distributions

For anything that is distributed by X, there are always two distributions:

- 1. Distribution of subjects by X
- 2. Distribution of total X by X.

Sometime we ignore the 2nd: height or weight.

Sometimes we care about the 2nd: income or assets.

Surprise: If the 1st is lognormal, so is the 2nd.

Distribution of Households and Total Income by Income

Suppose the distribution of households by income is log-normal with normal parameters mu# and sigma#.

Then the distribution of total income by amount has a log-normal distribution with these parameters: $mu\$ = mu\# + sigma\#^2$; sigma\$ = sigma#.

See Aitchison and Brown (1963) p. 158. Special thanks to Mohammod Irfan (Denver University) for his help on this topic.

Distribution of Total Income

Distribution of Households and Total Income

Lorenz Curve and Gini Coefficient

Champagne-Glass Distribution

The Gini coefficient is determined by the Mean#/Median# ratio.

The bigger this ratio the bigger the Gini coefficient and the greater the economic inequality.

As Mean-Median Ratio [↑] Rich get Richer (or vice-versa)

Log-normal distribution. Median HH income: \$50K.

	Тор	o 5%	Тор	1%	
Mean#	Min\$	%Income	Min\$	%Income	Gini
55	103	11%	138	2.9%	0.24
60	135	15%	204	4.2%	0.33
65	165	18%	270	5.5%	0.39
70	193	20%	337	6.6%	0.44
75	220	23%	406	7.7%	0.48
80	246	25%	477	8.7%	0.51
85	272	27%	549	9.7%	0.53
90	298	29%	623	10.7%	0.56

As Mean-Median ratio rises, Modal Income may decrease!

Median f	fixed at	\$50K	Top 5% Households					
Median	1edian Ratio Mean#		Mode#	Min\$ %Income		Gini		
50	1.2	60	35	135	15%	0.33		
50	1.3	65	30	165	18%	0.39		
50	1.4	70	26	193	20%	0.44		
50	1.5	75	22	220	23%	0.48		
50	1.6	80	20	246	25%	0.51		
50	1.7	85	17	272	27%	0.53		
50	1.8	90	15	298	29%	0.56		

Does this mean the poor get poorer as the rich get richer when median Income stays constant?

As Mean-Median ratio & Median ^, Mode may increase

				р 5%		
Median	Ratio	Mean#	Mode#	Min\$	%Income	Gini
40	1.2	48	28	108	15%	0.33
50	1.3	65	30	165	18%	0.39
60	1.4	84	31	231	20%	0.44
70	1.5	105	31	308	23%	0.48
80	1.6	128	31	394	25%	0.51
90	1.7	153	31	490	27%	0.53
100	1.8	180	31	595	29%	0.56

What does this mean?

Share of Top 10%, Bottom 40% and their Palma Ratio

Palma ratio: [Share of top10%] / [Share of bottom 40%]. Cobham and Sumner (2014) argue that the Palma ratio is a more understandable measure of inequality than the Gini.

	Тор	o 10%	Bottom	40%		
Mean#	Min\$	%Income	Max\$	%Income	Palma	Gini
55	87	20%	45	25%	0.8	0.24
60	108	25%	43	20%	1.3	0.33
65	127	29%	42	16%	1.8	0.39
70	143	32%	41	14%	2.3	0.44
75	159	35%	40	12%	2.8	0.48
80	173	38%	39	11%	3.4	0.51
85	187	40%	39	10%	4.0	0.53
		Median I	ncome: \$	50K		

Share of Top 10%, Bottom 40% and their Palma Ratio

Palma and Gini are independent of the Median Income when the Mean-Median Income ratio is constant.

			Тор	0 10%	Bottom	40%		
Median	Ratio	Mean#	Min\$	%Income	Max\$	%Income	Palma	Gini
40	1.5	60	127	35%	32	12%	2.83	0.48
50	1.5	75	159	35%	40	12%	2.83	0.48
60	1.5	90	190	35%	48	12%	2.83	0.48
70	1.5	105	222	35%	56	12%	2.83	0.48
80	1.5	120	254	35%	64	12%	2.83	0.48
90	1.5	135	285	35%	72	12%	2.83	0.48
100	1.5	150	317	35%	80	12%	2.83	0.48
Constant	t Mean-l	Median	Ratio					

Which parameters best model US household incomes?

US Median Income (Table 691*)

• \$46,089 in 1970; \$50,303 in 2008

Share of Total Income by Top 5% (Table 693*)

• 16.6% in 1970; 21.5% in 2008

Best log-normal fits:

- 1970 Median 46K, Mean 53K: Ratio = 1.15
- 2008 *Median 50K, Mean 73K*; Ratio = 1.46

* 2011 US Statistical Abstract (2008 dollars).

Distinguish whole & part

Consider a lognormal distribution of family incomes with a median of \$50K and a mean of \$80K. What percentage

- of income is held by the top 5% of families?
- of families hold the top 5% of income?
 Is there a difference in these percentages? Why?
 Which one is generally larger? Why?

What are some other causes of income differences?

Explore the Causes of Income Differences

Explore the Causes of Income Differences

Type of	Lowest	Second	Middle	Fourth	Highest	Тор
Household	fifth	fifth	fifth	fifth	fifth	5%
Married couple families	17%	36%	48%	65%	78%	82%
Single-male family	4%	6%	6%	5%	4%	2%
Single-female family	20%	17%	14%	9%	5%	4%
Non-family households	60%	42%	32%	21%	13%	12%
TOTAL	100%	100%	100%	100%	100%	100%
Mean # of income earners	0.4	0.9	1.3	1.7	2	2.1

Conclusion

Using the LogNormal distributions provides a principled way students can explore a plausible distribution of incomes.

Allows students to explore the difference between part and whole when using percentage grammar.

Bibliography

Aitchison J and JAC Brown (1957). The Log-normal Distribution. Cambridge (UK): Cambridge University Press. Searchable copy at Google Books: http://books.google.com/books?id=Kus8AAAAIAAJ Cobham, Alex and Andy Sumner (2014). Is inequality all about the tails?: The Palma measure of income inequality. Significance. Volume 11 Issue 1. www.significancemagazine.org/details/magazine/5871201/Is-inequalityall-about-the-tails-The-Palma-measure-of-income-inequality.html Limpert, E., W.A. Stahel and M. Abbt (2001). Log-normal Distributions across the Sciences: Keys and Clues. *Bioscience* 51, No 5, May 2001, 342-352. Copy at http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf Schield, Milo (2013) Creating a Log-Normal Distribution using Excel 2013. www.statlit.org/pdf/Create-LogNormal-Excel2013-Demo-6up.pdf Stahel, Werner (2014). Website: http://stat.ethz.ch/~stahel Univ. Denver (2014). Using the LogNormal Distribution. Copy at http://www.du.edu/ifs/help/understand/economy/poverty/lognormal.html Wikipedia. LogNormal Distribution.