4

TWO BIG IDEAS FOR TEACHING BIG DATA

1

Coincidence & Confounding

by Milo Schield Augsburg College, USA Electronic Conference on Teaching Statistics (E-COTS) May 20, 2014. www.StatLit.org/pdf/2014-Schield-eCOTS-Slides.pdf

2. *Confounding* is often the #1 problem.

2014 Schwid ACOTS
True Confession

I have been teaching introductory statistics for over two decades. I have a confession.

Survey Question 3 How many introductory statistics textbooks use coincidence or chance to support the claim that association is not causation? Response Choice None One or two Three-to-six More than half a dozen.

<section-header><section-header><section-header><section-header><section-header><section-header>

Consider a run of 10 heads? What is the chance of that?

11

Question is ambiguous! Doesn't state context!

- 1. Chance of 10 heads on **the next 10 flips**? p = 1/2; k = 10.
 - $P = p^k = (1/2)^{10} = one chance in 1,024$
- What is the chance of at least one set of 10 heads [somewhere] when flipping 1,024 sets of 10 coins each? At least 50%.*

14

#2 Grains of Rice Blastland: The Tiger That Isn't

With rice scattered in two dimensions, people can often see memorable shapes.

After this webinar, check out this Excel scattered-rice demo with 1 chance in 100 per cell:

15

17

www.StatLit.org/Excel/2012Schield-Rice.xls

#3: The "Birthday" Problem: Chance of a matching birthday

Event: one chance in N. In N tries, one event is

'expected' and is more likely than not. Schield (2012)

Survey Question 4

Would you teach *coincidence* in an introductory statistics class?

Response Choice

- No
 - Possibly
 - Probably
 - Almost certainly

Second Big Idea: Confounding

As sample size increases,

- · Margin of error decreases,
- Coincidence increases (becomes more likely)
- Confounding remains unchanged.

Big data doesn't minimize confounding. If anything, Big Data gives unjustified support for confounder-spurious associations.

18

21 Forecast with Confounder; Reversal is Incidental Data based on 2001 NAEP 4 th Grade Math Scores. Compare Utah (0) and Oklahoma (1)										
							Score = 228 - 4.5*S	tate	Score = 208.7 + 9.5*	State
							Regression Statis	tics	+ 25.01	Income
R Square	$0.02 \rightarrow Incr$	ease → R Square	0.42							
	16.23	Standard Error	12.48							
Standard Error										
p-value (Intercept	0.00 - Decr	ease - Pvalue (Intercept)	0.00							
p-value (Intercept) p-value (STATE)	0.00 Decr	ease - Pvalue (Intercept) p-value (STATE)	0.00 0.00							

				22				
Explain with Confounder;								
Rever sal is Essential								
Based on 2001 NAEP 4th Grade Math Scores								
	Low\$ (0)	High\$ (1)	Total	%High\$				
Utah (0)	209	234	228 🛉	78%				
Okla (1)	218	244 🕈	224	22%				
Causal Question:								
Which State has the better education system?								
Score = 228.3 - 4.5*State Score = 208.7 + 9.5*State + 25.0*Income								
+ +								
Utah (0) is better Oklahoma (1) is better								
Data at www.StatLit.org/Excel/2014-Schield-eCOTS-Data.xls								

Teaching Confounding: Reasons To...

#1: The Cornfield conditions¹ set a minimum on the size confounder that can negate or reverse an association. Schield (1999). These conditions can offset excessive skepticism/cynicism.

#2: When the predictor and confounder are binary, there are graphical techniques² that allow students to work problems without software and without a second course in regression. Schield (2006) This material has been taught for over 10 years.

29

- Schield (1999). Simpson's Paradox and Cornfield's Conditions, ASA Proceedings Statistical Education. www.StatLit.org/pdf/1999SchieldASA.pdf.
- Schield (2006). Presenting Confounding Graphically Using Standardization. *STATS magazine*. www.statlit.org/pdf/2006SchieldSTATS.pdf
- Schield (2012). Coincidence in Runs and Clusters www.statlit.org/pdf/2012Schield-MAA.pdf
- Terwilliger and Schield (2004). Frequency of Simpson's Paradox in NAEP Data. AERA. See www.StatLit.org/pdf/2004TerwilligerSchieldAERA.pdf

Suggested Readings

- 1. Pearl, Judea (2000). Simpson's Paradox: An Anatomy. http://bayes.cs.ucla.edu/R264.pdf
- Pearl, Judea (2014). Understanding Simpson's Paradox. *The American Statistician*, 2/2014, V68, N1 http://ftp.cs.ucla.edu/pub/stat_ser/r414-reprint.pdf
- Pearl, J. (2014). Statistics and Causality: Separated to Reunite. Commentary. Health Service Research. http://ftp.cs.ucla.edu/pub/stat_ser/r373-reprint.pdf
- Gelman blog (2014). On Simpson's Paradox. http://andrewgelman.com/2014/02/09/keli-liu-xiaoli-meng-simpsons-paradox/

30

