1

2

Logistic Regression using Excel OLS with Nudge

Milo Schield, Augsburg College Elected Member: International Statistical Institute US Rep: International Statistical Literacy Project VP. National Numeracy Network

JSM Philadelphia July 31, 2017 www.StatLit.org/pdf/2017-Schield-ASA-Slides.pdf

Logistic Regression (LR) is Common and Important

Yes/No decisions (binary outcomes) are common in

- Marketing: Predicting whether someone will buy
- · Finance: Deciding whether to grant a loan
- · Medicine: Determining whether one has a condition
- · Epidemiology: Identifying related factors to an outcome

Logistic regression is the most common way of modelling binary outcomes. It is one of the main topics in Stat 200.

It is almost never taught in Stat 100.

But it should be!!!

V1F

Why Isn't Logistic Regression Taught in Intro Course?

LR isn't taught in Stat 100 for several reasons:

- 1. Complexity: Maximum likelihood estimation is complex as are odds, log-odds and quality measures.
- 2. Availability: Not available in Excel or on calculators.
- 3. Infinity: |Log(Odds)| goes to infinity when p=0 or p=1
- 4. Non-analytic: Requires trial & error to find best solution.
- 5. Time: No extra time for extra topics in Intro Statistics.

V1F			2017 ASA		9				
Ln[Odds(Nudged Prob)]									
A	В	С	D	E	F	G			
Predict chance of being male given height. Regress using									
C7 =IF(B7=0, 0.001, 0.			0.999)	E7	=LN(D7)			
D7	=C7/(1	-C7)							
Height	Male	Male1	Odds	LN(Odds)	yPred	6			
61	0	0.001	0.001	-6.91		7			
61.75	0					8			
62	0					9			

	V1F		2017 ASA		10					
	OLS Results:									
	Regres	s Ge	nder o	n Heig	ht					
17	SUMMARY OUTPUT	1								
18										
19	Regression Sta	itistics								
20	Multiple R	0.7142818								
21	R Square	0.5101985								
22	Adjusted R Square	0.5047563								
23	Standard Error	4.745373								
24	Observations	92								
32		C	oefficients	ndard Err	t Stat					
33	Intercept		-88.79665	9.354652	-9.49224					
34	Height 1		1.3162354	0.135942	9.682351					

VIF **EXAMPLY** (17) **Recommendation** Those teaching intro statistics needs to think broadly. Going deeper is good for those who plan to continue on. But almost none of those taking Stat 101 will take Stat 201. Introducing logistic regression using OLS is simple. The difference between MLE and OLS may not be significant. Introducing logistic regression in STAT 101 opens the door for other multivariate items such as confounding, classification analysis and discriminant analysis.

Logistic Regression using Excel OLS with 'Nudge"

VIF 21 Much More Important Issues Un-Scientific American

Three strikes and you are out!

- 1. Association is not statistically significant
- 2. Association is not materially significant
- 3. Author knows that both of these are true, yet puts the association in the headline to the story

Moral: Statistical educators need to put more attention on misuses of statistics in the everyday media. To do less is professional negligence.

V1F	2017 ASA	22
	Bibliography	
Carlberg, Con Excel. Qu Lowry, R. (20	rad (2012). Decision Analytic ne Publishing. 17). E-mail http://vassarstats.r	s: Microsoft net/logreg1.html
Moore, David Competence http://iase-	(2001). Statistical Literacy an ce in the New Century. <i>IASE 1</i> web.org/documents/papers/sat2	d Statistical P <i>roceedings</i> . 2001/Moore.pdf
Schield, Milo Schield, Milo and Pulse o Minitab-M	(2017). Tools at www.StatLit. (2016). Logistic Regression us lataset. http://www.statlit.org/j LE1-Test1.pdf	org/tools.htm sing Minitab pdf/2016-