Create Pwor Tables using Excel 2003 Version 19 Creating Pivot Tables Using Excel 2003 Creating Six Kinds of Tables Milo Schield Member: International Statistical Institute US Rep: International Statistical Literacy Project Director, W. M. Keck Statistical Literacy Project Slides at: www.StatLit.org/pdf/ Create-Pivot-Tables-Excel-2003-6up.pdf

Use this eight-question (Q1-Q8) survey data: B1:1241

Data for Q1-Q4 (B-E) is Binary: $0=\mathrm{No}, 1=$ Yes. Data for Q5-Q6 (F-G) is Ordinal (discrete): 1-5. Data for Q7-Q8 (H-I) is Quantitative (ratio).

	A	B	C	D	E	F	G	H	I
1	ID	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
2	1	0	1	0	0	3	5	67	5
3	2	0	1	0	1	4	1	62	4
4	3	0	1	0	1	3	4	60	5
5	4	0	1	1	0	4	5	60	4
6	5	0	0	1	0	3	1	71	3

Excel instructions and data at:
www.StatLit.org/xls/2012Isaacson240Data.xls

1) Create Two-way Count Table Use Q1 data; Index by Q1 \& Q2

Table 1:			
Count of Q1	Q2		
Q1	0 No	1 Yes	Grand Total
0 No	95	35	130
1 Yes	78	32	110
Grand Total	173	67	240

110 subjects answered Yes to Q1.
67 subjects answered Yes to Q2.
32 subjects answered Yes to Q1 and Yes to Q2. 95 subjects answered No to Q1 and No to Q2.

2) Create two-way Averages: Use 97 Data. Index by 91 \& 92

Table 2.			
Average of Q7) Q2			
Q1	0 No	1 Yes	Grand Total
0 No	66.03	67.31	66.38
1 Yes	64.83	62.84	64.25
Grand Total	65.49	65.18	65.40

Average of Q7 data for all subjects is 65.4
Average ... for those saying Yes to Q1 is 64.25
Average ... for those saying Yes to Q1 and Yes to Q1 is 62.84

3) Create two-group table of Statistics for Q7: Index by Q1

Table 3.

Q1	Data	Total
No ${ }^{0}$	Average of Q7	66.38
	Count of Q7_2	130
	StdDev of Q7_3	11.38
Yes	Average of Q7	64.25
	Count of Q7_2	110
	StdDev of Q7_3	12.21
Total Average of Q7		65.40
Total Count of Q7_2		240
Total StdDev of Q7_3		11.79

65.4 is the overall average of [the answers to] Q7.

The average of [the answers to] Q7 for those who said Yes to Q1 was 64.25

4) Create $\mathbf{1 0 0 \%}$ Column Table; Index on $Q 1$ and $Q 2$.			
Table 4			
Count of Q2	Q2		
Q1	0 No	1 Yes	Grand Total
0 No	55\%	52\%	54\%
1 Yes	45\%	48\%	46\%
Grand Total	100\%	100\%	100\%
Columns are 100% wholes; Rows are parts. 46% of all subjects said Yes to Q1. 48\% of [subjects who said Yes to Q2] said Yes to Q1. 55% of [subjects who said No to Q2] said No to Q1.			

5) Create 100\% Row Table; Index on Q1 and Q2.

Table 5.			
Count of Q2	Q2		
Q1	0 No	1 Yes	Grand Total
0 No	73%	27%	100%
1 Yes	71%	29%	100%
Grand Total	72%	28%	100%

Rows are 100% wholes; Columns are parts.
28% of all subjects said Yes to Q2.
29% of subjects who said Yes to Q1 said Yes to Q2.
73\% of subjects who said No to Q1 said No to Q2.

6) Create Two Way Table of Q3; Index on Q1 and Q2.

Q3 is the common part. Rows and columns are wholes 59% of all subjects said Yes to Q3.
36% of subjects who said Yes to Q1 said Yes to Q3.
54% of subjects who said Yes to Q2 said Yes to Q3.
34% of those who said Yes to Q1 and Q2 said Yes to Q3.

