XLAR: V3D Create Discrete Distributions using Excel 2013

by Milo Schield Member: International Statistical Institute US Rep: International Statistical Literacy Project Director, W. M. Keck Statistical Literacy Project

Slides, output and data at: www.StatLit.org/ pdf/Excel2013-Create-Discrete-Distributions-Slides.pdf pdf/Excel2013-Create-Discrete-Distributions-Demo.pdf xls/Excel2013-Create Discrete-Distributions-Data.xlsx

Goal: Create the output on #6, #8 and #10. Upload.

XL4A: V3D CONF DOES NOT AND A CONTROL OF A CONTROL A CONTROL OF A CONTROL A CONTRO

3

5

The key assumption for all three is randomness:

The chance of success is constant in #1 (Binomial) and in #3 (Poisson) and is independent of the past.

The chance of success in #2 (Hyper-geometric) varies. It depends on the past. But given the past, the chance of success on the next try is determined.

#1: Binomial Distribution

XL4A: V3D

The binomial distribution shows the probability of K successes in N tries given a chance of success P per try. **Chance: EXACTLY two heads in three flips of coin:** $\geq =$ BINOM.DIST(2, 3, .5, 0) which returns 0.375. 1st argument is k (# successes); 2nd is N (# tries); 3rd is P (chance of success); 4th is 0 (exactly k successes). The **cumulative probability for k ≤ 2** is given by:

➤ =BINOM.DIST(2, 3, .5, 1) which returns 0.875: the chance of UP TO two heads (of zero, one OR two heads) in three flips of a fair coin.

XL4A: V3D Enter Binom.Dist Functions: C7 & D7. Copy down. В С D F A 2 BINOMIAL DISTRIBUTION 3 Fixed probability per trial Δ 8 N: # of independent tries 5 0.5 P: Chance of success per try 6 k PDF CDF D7 0.00 0.00 =BINOM.DIST(B7,B\$4,B\$5,1) 7 0 0.03 0.04 8 - C7 1 9 2 0.11 0.14 =BINOM.DIST(B7,B\$4,B\$5,0) 10 3 0.22 0.36 0.27 0.64 11 4

XLA: V3D WINDERFORMED (ALCON) #2: Hyper-Geometric Distribution Distribution This function gives the chance of k successes in n tries in sampling without replacement from a population of size N containing K successes. The chance of getting three Aces in a hand of 13 cards from a deck of 52 cards containing four aces is: =HYPGEOM.DIST(3, 13, 4, 52, 0) which is 0.041. The cumulative probability for k ≤ 3 is given by: =HYPGEOM.DIST(3, 13, 4, 52, 1) which is 0.997.

First input is kmax; the 2^{nd} is *n*, the 3^{rd} is K, the 4^{th} is N while the 5^{th} is either zero (exact) or one (cumulative).

;	KL4A: V3[D		8		
					-	netric down
Н	1	J	K	L	М	N
2	HYPE	ERGEC	DMET	RIC DIS	TRIBUTI	ON
3	52	Size	of Sn	nall Pop	ulation	
4	16	# Successes in Population				
5	13	Size	of Sa	mple (n	o repla	cement)
6	k	PDF	CDF	K7		
7	0	0.00	0.00	=HYPG	EOM.DI	ST(17,1\$5,1\$4,1\$3,1)
8	1	0.03	0.04	J7		
9	2	0.11	0.15	=HYPG	EOM.DI	ST(17,1\$5,1\$4,1\$3,0)
10	3	0.22	0.37			
11	4	0.27	0.64			

XLA: Y3D g #3: Poisson Distribution Poisson: Gives the chance of EXACTLY k rare events during a given time or space if the expected # is known. The chance of four deaths per year for kids ages 5-10 when the expected number is two is given by: > =POISSON.DIST(2, 3, 0) It returns 0.15. The cumulative probability for UP TO two per year: > =POISSON.DIST(3, 3, 1) It returns 0.42. The 1st number is the EXACT or MAXIMUM number that is observed, the 2nd number is what is EXPECTED, the 3rd number is either zero (exact probability) or one (cumulative probability).

XL4A: V3D					10			
	C5	7, j 5	7 E	nt	er F	oisso	on fu	nction;
				C	ору	<mark>dow</mark>	n	
54	в	С	3	Ex	pecte	d # succe	ess	
55	Cha	nce of	exact	_		esses in t		-
56	k	PDF		1				
57	0	0.05	=PO	ISS	ON.DI	ST(B57,	D\$54,0)	
58	1	0.15				• •		
59	2	0.22						
				1	J			355
				Cha	nce of	f kmax or	fewer s	uccess in tim
			56	ma	X CDF			
			57	0	0.05	=POISS	ON.DIST	r(157,D\$54,1)
			58	1	0.20			
			59	2	0.42			

Process & Outcomes

11

1. Duplicate the output worksheet.

XL4A: V3D

2. Upload your duplicate worksheet under XL4a.

Create Discrete Distributions using Excel 2013

by Milo Schield

Member: International Statistical Institute US Rep: International Statistical Literacy Project Director, W. M. Keck Statistical Literacy Project

Slides, output and data at: www.StatLit.org/ pdf/Excel2013-Create-Discrete-Distributions-Slides.pdf pdf/Excel2013-Create-Discrete-Distributions-Demo.pdf xls/Excel2013-Create Discrete-Distributions-Data.xlsx

Background & Goals Discrete Outcomes

Three cases:

- #1 Binomial: Events are independent; chances are per try.
- #2 Hypergeometric: Events are dependent: sample without replacement from a fixed finite population.
- #3 Poisson: Events are independent and rare. Only know the average (expected) over a given time or space.
- **Activity: Enter formulas in Data.**

Goal: Create the output on #6, #8 and #10. Upload.

has Certain Assumptions

The key assumption for all three is randomness:

The chance of success is constant in #1 (Binomial) and in #3 (Poisson) and is independent of the past.

The chance of success in #2 (Hyper-geometric) varies. It depends on the past. But given the past, the chance of success on the next try is determined.

Each Distribution can be used two ways

In each case, the data is presented in two ways:

PDF(k); the **probability distribution function:** the chance of getting EXACTLY k successes.

CDF(kmax): the **cumulative distribution function:** the chance of getting UP TO kmax successes: kmax or fewer.

For a discrete outcome, the CDF(kmax) is just the sum of the PDF(k) for k between zero and kmax.

#1: Binomial Distribution

The binomial distribution shows the probability of K successes in N tries given a chance of success P per try. **Chance: EXACTLY two heads in three flips of coin:** \geq =BINOM.DIST(2, 3, .5, 0) which returns 0.375. 1st argument is k (# successes); 2nd is N (# tries); 3rd is P (chance of success); 4th is 0 (exactly k successes). The cumulative probability for $k \leq 2$ is given by: \geq =BINOM.DIST(2, 3, .5, 1) which returns 0.875: the chance of UP TO two heads (of zero, one OR two heads) in three flips of a fair coin.

Enter Binom.Dist Functions: C7 & D7. Copy down.

А	В	С	D	Е	F	G				
2	BINOMIAL DISTRIBUTION									
3	Fixed probability per trial									
4	8	8 N: # of independent tries								
5	0.5	P: Ch	ance	of succe	ess per t	ry				
6	k	PDF	CDF	D7						
7	0	0.00	9.00	=BINON	1.DIST(E	87,B\$4,B\$5,1)				
8	1	0.03	0.04	<mark>∼</mark> C7						
9	2	0.11	0.14	=BINON	1.DIST(E	87,B\$4,B\$5,0)				
10	3	0.22	0.36							
11	4	0.27	0.64							

#2: Hyper-Geometric Distribution

This function gives the chance of *k* successes in *n* tries in sampling without replacement from a population of size N containing K successes.

The chance of getting three Aces in a hand of 13 cards from a deck of 52 cards containing four aces is:

=HYPGEOM.DIST(3, 13, 4, 52, 0) which is 0.041.

The cumulative probability for $k \le 3$ is given by:

=HYPGEOM.DIST(3, 13, 4, 52,1) which is 0.997.

First input is kmax; the 2^{nd} is *n*, the 3^{rd} is K, the 4^{th} is N while the 5^{th} is either zero (exact) or one (cumulative).

Enter Hypergeometric in J7 & K7. Copy down

H	1	J	K	L	М	N
2	HYPI	ERGEC	OMETR	RIC DIS	TRIBUTI	ON
3	52	Size	of Sm	all Pop	oulation	
4	16	# Su	ccesse	e <mark>s in P</mark> o	pulation	1
5	13	Size	of Sa	mple (r	no replac	cement)
6	k	PDF	CDF	K7		
7	0	0.00	0.00	=HYPC	GEOM.DI	ST(I7,I\$5,I\$4,I\$3,1)
8	1	0.03	0.04	J 7		
9				=HYPC	GEOM.DI	ST(17,1\$5,1\$4,1\$3,0)
10	3	0.22	0.37			
11	4	0.27	0.64			

#3: Poisson Distribution

Poisson: Gives the chance of EXACTLY k rare events during a given time or space if the expected # is known. The chance of four deaths per year for kids ages 5-10 when the expected number is two is given by:

- > =POISSON.DIST(2, 3, 0) It returns 0.15.
- The cumulative probability for UP TO two per year: > =POISSON.DIST(3, 3, 1) It returns 0.42.
- The 1st number is the EXACT or MAXIMUM number that is observed, the 2nd number is what is EXPECTED, the 3rd number is either zero (exact probability) or one (cumulative probability).

C57, J57 Enter Poisson function; Copy down

54	В	С	3	Expect	ted # su	Iccess
55	Char	nce of	exactl	y k suc	cesses	in time T.
56	k	PDF				
57	0	0.05	=POI	SSON.	DIST(B	57,D\$54,0)
58	1	0.15				
59	2	0.22				

	I	J	
	Char	ice of	f kmax or fewer success in time T
56	kmax	CDF	
57	0	0.05	=POISSON.DIST(I57,D\$54,1)
58	1	0.20	
59	2	0.42	

Process & Outcomes

- 1. Duplicate the output worksheet.
- 2. Upload your duplicate worksheet under XL4a.