## XL4A: V3D <br> Create Discrete Distributions using Excel 2013

by<br>Milo Schield<br>Member: International Statistical Institute US Rep: International Statistical Literacy Project Director, W. M. Keck Statistical Literacy Project

Slides, output and data at: www.StatLit.org/ pdf/Excel2013-Create-Discrete-Distributions-Slides.pdf pdf/Excel2013-Create-Discrete-Distributions-Demo.pdf xIs/Excel2013-Create Discrete-Distributions-Data.xlsx

## XL4A: V3D

## Background \& Goals Discrete Outcomes

Three cases:
\#1 Binomial: Events are independent; chances are per try.
\#2 Hypergeometric: Events are dependent: sample without replacement from a fixed finite population.
\#3 Poisson: Events are independent and rare. Only know the average (expected) over a given time or space.

Activity: Enter formulas in Data.

Goal: Create the output on \#6, \#8 and \#10. Upload.

## XL4A: V3D <br> Each Distribution has Certain Assumptions

The key assumption for all three is randomness:

The chance of success is constant in \#1 (Binomial) and in \#3 (Poisson) and is independent of the past.

The chance of success in \#2 (Hyper-geometric) varies. It depends on the past. But given the past, the chance of success on the next try is determined.


In each case, the data is presented in two ways:
$\operatorname{PDF}(\mathrm{k})$; the probability distribution function:
the chance of getting EXACTLY k successes.

CDF(kmax): the cumulative distribution function: the chance of getting UP TO kmax successes: kmax or fewer.

For a discrete outcome, the $\operatorname{CDF}(\mathrm{kmax})$ is just the sum of the $\operatorname{PDF}(\mathrm{k})$ for $k$ between zero and kmax.

XL4A: V3D Create Discere Destrivitons using Exeer2013 5

## \#1: Binomial Distribution

The binomial distribution shows the probability of K successes in N tries given a chance of success P per try.
Chance: EXACTLY two heads in three flips of coin:
$>=$ BINOM.DIST(2, 3, .5, 0) which returns 0.375 .
$1^{\text {st }}$ argument is k (\# successes); $2^{\text {nd }}$ is N (\# tries); $3^{\text {rd }}$ is P (chance of success); $4^{\text {th }}$ is 0 (exactly $k$ successes). The cumulative probability for $\mathbf{k} \leq \mathbf{2}$ is given by:
$>=$ BINOM.DIST(2, 3, .5, 1) which returns 0.875 : the chance of UP TO two heads (of zero, one OR two heads) in three flips of a fair coin.


| A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | BINOMIAL DISTRIBUTION |  |  |  |  |  |
| 3 | Fixed probability per trial |  |  |  |  |  |
| 4 | 8 | N : \# of independent tries |  |  |  |  |
| 5 | 0.5 | P: Chance of success per try |  |  |  |  |
| 6 | k | PDF | CDF | D7 |  |  |
| 7 | 0 | 0.00 | 2.00 | =BINOM.DIST(B7,B\$4,B\$5,1) |  |  |
| 8 | 1 | 0.03 | 0.04 | - C 7 |  |  |
| 9 | 2 | 0.11 | 0.14 | =BINOM.DIST(B7,B\$4,B\$5,0) |  |  |
| 10 | 3 | 0.22 | 0.36 |  |  |  |
| 11 | 4 | 0.27 | 0.64 |  |  |  |


Process \& Outcomes
. Duplicate the output worksheet.
2. Upload your duplicate worksheet under XL4a.

## XL4A: V3D <br> \#2: Hyper-Geometric Distribution

This function gives the chance of $k$ successes in $n$ tries in sampling without replacement from a population of size N containing K successes.
The chance of getting three Aces in a hand of 13 cards from a deck of 52 cards containing four aces is:
$=$ HYPGEOM.DIST $(3,13,4,52,0)$ which is 0.041 .
The cumulative probability for $\mathrm{k} \leq 3$ is given by:
$=$ HYPGEOM.DIST $(3,13,4,52,1)$ which is 0.997 .
First input is kmax; the $2^{\text {nd }}$ is $n$, the $3^{\text {rd }}$ is K , the $4^{\text {th }}$ is N while the $5^{\text {th }}$ is either zero (exact) or one (cumulative).

## Enter Hypergeometric in J7 \& K17. Copy down




XL4A: V3D Create Discerele Distivutons usimg Excer2013 $\quad 9$
\#3: Poisson Distribution

Poisson: Gives the chance of EXACTLY k rare events during a given time or space if the expected \# is known.
The chance of four deaths per year for kids ages 5-10 when the expected number is two is given by: $>=$ POISSON.DIST(2, 3, 0) It returns 0.15 . The cumulative probability for UP TO two per year: $>=$ POISSON.DIST( $3,3,1$ ) It returns 0.42 .
The $1^{\text {st }}$ number is the EXACT or MAXIMUM number that is observed, the $2^{\text {nd }}$ number is what is EXPECTED , the $3^{\text {rd }}$ number is either zero (exact probability) or one (cumulative probability).

7 -

# Create Discrete Distributions using Excel 2013 

## by Milo Schield

Member: International Statistical Institute
US Rep: International Statistical Literacy Project
Director, W. M. Keck Statistical Literacy Project

Slides, output and data at: www.StatLit.org/ pdf/Excel2013-Create-Discrete-Distributions-Slides.pdf pdf/Excel2013-Create-Discrete-Distributions-Demo.pdf xIs/Excel2013-Create Discrete-Distributions-Data.xIsx

## Background \& Goals Discrete Outcomes

Three cases:
\#1 Binomial: Events are independent; chances are per try.
\#2 Hypergeometric: Events are dependent: sample without replacement from a fixed finite population.
\#3 Poisson: Events are independent and rare. Only know the average (expected) over a given time or space.
Activity: Enter formulas in Data.

Goal: Create the output on \#6, \#8 and \#10. Upload.

## Each Distribution has Certain Assumptions

The key assumption for all three is randomness:

The chance of success is constant in \#1 (Binomial) and in \#3 (Poisson) and is independent of the past.

The chance of success in \#2 (Hyper-geometric) varies. It depends on the past. But given the past, the chance of success on the next try is determined.

# Each Distribution can be used two ways 

In each case, the data is presented in two ways:

PDF $(\mathrm{k})$; the probability distribution function: the chance of getting EXACTLY k successes.

CDF(kmax): the cumulative distribution function: the chance of getting UP TO kmax successes: kmax or fewer.

For a discrete outcome, the $\operatorname{CDF}(\mathrm{kmax})$ is just the sum of the $\operatorname{PDF}(\mathrm{k})$ for $k$ between zero and kmax.

## \#1: Binomial Distribution

The binomial distribution shows the probability of K successes in N tries given a chance of success P per try. Chance: EXACTLY two heads in three flips of coin: $>=$ BINOM.DIST(2, 3, .5, 0) which returns 0.375. $1^{\text {st }}$ argument is k (\# successes); $2^{\text {nd }}$ is N (\# tries); $3^{\text {rd }}$ is $P$ (chance of success); $4^{\text {th }}$ is 0 (exactly $k$ successes). The cumulative probability for $\mathbf{k} \leq \mathbf{2}$ is given by: $>=$ BINOM.DIST(2, 3, .5, 1) which returns 0.875: the chance of UP TO two heads (of zero, one OR two heads) in three flips of a fair coin.

## Enter Binom.Dist Functions: C7 \& D7. Copy down.

| A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BINOMIAL DISTRIBUTION |  |  |  |  |  |  |
| 3 | Fixed probability per trial |  |  |  |  |  |
| 4 | 8 | N : \# of independent tries |  |  |  |  |
| 5 | 0.5 | P: Chance of success per try |  |  |  |  |
| 6 | k | PDF | CDF | D7 |  |  |
| 7 | 0 | 0.00-2.00 |  | $=\mathrm{BINOM} . \operatorname{DIST}(\mathrm{B} 7, \mathrm{~B} \$ 4, \mathrm{~B} \$ 5,1)$ |  |  |
| 8 | 1 | 0.03 | 0.04 | C7 |  |  |
| 9 | 2 | 0.11 | 0.14 | =BINOM. $\mathrm{DIST}(\mathrm{B} 7, \mathrm{~B} \$ 4, \mathrm{BS5}, 0)$ |  |  |
| 10 | 3 | 0.22 | 0.36 |  |  |  |
| 11 | 4 | 0.27 | 0.64 |  |  |  |

## \#2: Hyper-Geometric Distribution

This function gives the chance of $k$ successes in $n$ tries in sampling without replacement from a population of size N containing K successes.
The chance of getting three Aces in a hand of 13 cards from a deck of 52 cards containing four aces is:
$=$ HYPGEOM.DIST( $3,13,4,52,0$ ) which is 0.041 .
The cumulative probability for $\mathrm{k} \leq 3$ is given by:
$=$ HYPGEOM.DIST(3, 13, 4, 52,1) which is 0.997 .
First input is kmax; the $2^{\text {nd }}$ is $n$, the $3^{\text {rd }}$ is $K$, the $4^{\text {th }}$ is $N$ while the $5^{\text {th }}$ is either zero (exact) or one (cumulative).

# Enter Hypergeometric in J7 \& IK7. Copy down 



## \#3: Poisson Distribution

Poisson: Gives the chance of EXACTLY k rare events during a given time or space if the expected \# is known.
The chance of four deaths per year for kids ages 5-10 when the expected number is two is given by: $>=$ POISSON.DIST(2, 3, 0) It returns 0.15. The cumulative probability for UP TO two per year: > =POISSON.DIST(3, 3, 1) It returns 0.42. The $1^{\text {st }}$ number is the EXACT or MAXIMUM number that is observed, the $2^{\text {nd }}$ number is what is EXPECTED , the $3^{\text {rd }}$ number is either zero (exact probability) or one (cumulative probability).

## C57, J57 Enter Poisson function; Copy down

| 54 | B | C | 3 | Expected \# success |
| :---: | :---: | :---: | :---: | :---: |
| 55 | Chance of exactly k successes in time T . |  |  |  |
| 56 | k | PDF |  |  |
| 57 | 0 | 0.05 | =POISSON.DIST(B57,D\$54,0) |  |
| 58 | 1 | 0.15 |  |  |
| 59 | 2 | 0.22 |  |  |

$\frac{\mathrm{I} \mathrm{J}}{\text { Chance of kmax or fewer success in time } \mathrm{T}}$ 56 kmax CDF

| 57 | 0 | 0.05 | =POISSON.DIST $(157$, D $\$ 54,1)$ |
| :--- | :---: | :---: | :---: |
| 58 | 1 | 0.20 |  |
| 59 | 2 | 0.42 |  |

## Process \& Outcomes

1. Duplicate the output worksheet.
2. Upload your duplicate worksheet under XL4a.
