

Goal: Graph Data By Time Using a Ratio Display

Assignment: Generate FIVE charts as shown.

- These five graphs are shown on slides 5, 6, 8, 9 and 10 .
- Professional graph (slide 12) is not required.

Data is the spot price for crude oil:
West Texas Intermediate (WTI), FOB Cushing OK.
Data at:
www.StatLit.org/XLS/Excel2013-Graph-Ratio-Display-Data.xls
Original data source:
https://research.stlouisfed.org/fred2/series/DCOILWTICO/downloaddata

| xıt: voo |
| :--- | :--- |
| Prololem with Linear |
| Compare two doublings: |
| - Doubling from 20 to 40 (20 points). |
| - Doubling from 80 to 160 (80 points) |
| Second looks bigger than the first on a linear interval scale. |
| Goal: Scale the y-axis so each doubling has the same size. |
| Solution: Format the y-axis using a 'ratio scale'. |
| Ratio scale: Identical ratios (doublings) have same size. |
| Technically, a 'ratio scale' is called a "logarithmic scale." |

Graph Time-Series Using Ratio Display in Excel 2013

by
 Milo Schield

Elected Member: International Statistical Institute (ISI) US Rep: International Statistical Literacy Project (ISLP) Vice President: National Numeracy Network (NNN) Director, W. M. Keck Statistical Literacy Project

Materials at: www.StatLit.org/pdf
/Excel2013-Graph-Ratio-Display-Demo-Output.pdf /Excel2013-Graph-Ratio-Display-Slides.pdf

Goal: Graph Data By Time Using a Ratio Display

Assignment: Generate FIVE charts as shown.

- These five graphs are shown on slides 5, 6, 8, 9 and 10.
- Professional graph (slide 12) is not required.

Data is the spot price for crude oil:
West Texas Intermediate (WTI), FOB Cushing OK.
Data at:
www.StatLit.org/XLS/Excel2013-Graph-Ratio-Display-Data.xls
Original data source:
https://research.stlouisfed.org/fred2/series/DCOILWTICO/downloaddata

Data at A18:B373

	A	B	C	D	E	F
1	Title:	Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma				
2	Series ID:	DCOILWTICO				
3	Source:	US. Energy Information Administration				
4	Release:	Spot Prices (Not a Press Release)				
5	Seasonal Adjustment:	Not Seasonally Adjusted				
6	Frequency:	Monthly				
7	Aggregation Method:	Average				
8	Units:	Dollars per Barrel				
9	Date Range:	1986-01-02 to 2015-08-17				
10	Last Updated:	2015-08-19 1:41 PM CDT				
11	Notes:	Definitions, Sources and Explanatory Notes:				
12		http://www.eia.doe.gov/dnav/pet/Tb\|Defs/pet_pri_spt_tbldef2.asp				
13	Source:	https://research.stlouisfed.org/fred2/series/DCOILWTICO/downloaddata				
14	Filename	201508-DCOILWTICO-Monthly.xls				
15						
16	DATE	PRICE				
17	1986-01-01	22.93				
18	1986-02-01	15.45				
19	1986-03-01	12.61				

Select Line Graph: 2-D. No marlkers

Format Axis

axis options v text of Graph 1: \mathbf{Y} is Linear () © 送 Ill X: Major 24 M; Date

Date axis
Bounds

Minimum	$1 / 1 / 1986$
Maximum	$7 / 1 / 2015$
Units	
Major 24	Months

4 NUMBER
Category

Date
Type
$3 / 14 / 2001$

Oil Price
40

0

Graph 2: Format Year

4 NUMBER
Category

Custom	$=$
Type	
yyy	

Format Code (i)
ywy

40
20

0

Problem with Linear

Compare two doublings:

- Doubling from 20 to 40 (20 points).
- Doubling from 80 to 160 (80 points)

Second looks bigger than the first on a linear interval scale.

Goal: Scale the y-axis so each doubling has the same size.
Solution: Format the y-axis using a 'ratio scale'.
Ratio scale: Identical ratios (doublings) have same size.
Technically, a 'ratio scale' is called a "logarithmic scale."

Results

US Oil since 1986. Min =10; $\mathrm{Max}=140$. Factor of 14. Use Log scale when Y data values more than double. Set base so there are 2-4 powers between min \& max

- Base 10: 10 to 1000. One power between min \& max
- Base 5: 5 to 125: One power between min \& max.
- Base 2: 10 to 160: Three powers between min \& max.

Conclusion: Log scale with base 2 is preferred.

Note: A professional graph (slide 12) should be easily readable from a distance and be self-explanatory.

Professional Graph:

 Readable, Self-Explanatory Oil Prices (US\$ per Barrel) West Texas Intermediate; FOB Cushing OK

