2

XL2A VOL **Model using Trendline** (Linear) in Excel 2013

by **Milo Schield** Member: International Statistical Institute US Rep: International Statistical Literacy Project Director, W. M. Keck Statistical Literacy Project

Slides at: www.StatLit.org/pdf /Excel2013-Model-Trendline-Linear-Slides.pdf

Goal: Summarize association between two variables

XL2A VOL

- 1. Create three charts involving two quantitative variables. Slides 15, 19 & 21.
- 2. Show trend-line for the association. Show the equation and R²: the goodness of fit.
- 3. Describe trend (qualitative and quantitative) in words for each graph. See slides 15 & 20.
- 4. [Optional] Describe R² and model in words.

Data source: www.StatLit.org/excel/pulse.xls

Model Trendline Linear Ewel 2013 **Approach:** Data Selection

3

- Three approaches to selecting data
- 1. Select X and Y axis data before inserting chart
- 2. Select just the Y-axis data before inserting chart
- 3. Select X and Y axis data *after* inserting chart.

Evaluation:

XL2A VO

- #1: best if X-axis data is to the left of Y-axis data #2: best if X-axis data is to the right of Y-axis data
- #3: allows the most control.

Linear Model using Excel 2013 Trendline

Point at horizontal axis; Press right mouse; Select "Format Axis"

80

18

art Type

60

XL2A VO Describe slope (Qual+Quant) & Fit on spreadsheet; not in graph

Slope (Qualitative, Use either one):

- Heavier people have a lower rest pulse rate [than lighter people]
- As weight increases, rest pulse decreases. • There is a negative association between rest pulse and weight.
- Slope (Quantitative, Use either one):
- As weight increases by 1#, rest pulse decreases by 0.09 BPM.
- Rest pulse decreases by 0.09 bpm for every extra # of weight.
- Quality of the Model (Fit) using R-squared [Optional]
- 4% of variation in rest pulse is eliminated (explained) by weight

Linear model of Rest Pulse based on Weight: [Optional]

- Predicted rest pulse = [-0.094 bpm/#]*Weight(#) + 86.5 bpm
- Predicted weight = AveWeight + [5.1#/inch][Height AveHt]

Model Transfina Linear Eval 2012 **#3b: Describe Slope and Fit On spreadsheet; not in graph**

Required: [See slide 21 for examples]

- 1. Give a qualitative description of the trend.
- 2. Give a quantitative description of the trend.

Optional:

XL2A VOL

- 1. Give an algebraic description of the relationship.
- 2. Give an arithmetic description of the fit.
- Use the value of R-squared, but do not use that phrase. 3. Describe the linear model in words (no symbols)

Compare Models [Not Required]

R-squared: quality of the model.

- 62% of weight variation is explained by height
- 4.1% of Pulse1 variation explained by Weight
- 4.5% of Pulse1 variation explained by Height

Conclusions:

XL2A VOL

Height is a fair predictor ($R^2 \sim 60\%$) of weight. Height and weight are poor predictors ($R^2 < 5\%$) of rest pulse (Pulse1)

23

24

Model using Trendline (Linear) in Excel 2013

by Milo Schield

Member: International Statistical Institute US Rep: International Statistical Literacy Project Director, W. M. Keck Statistical Literacy Project

Slides at: www.StatLit.org/pdf /Excel2013-Model-Trendline-Linear-Slides.pdf

Goal: Summarize association between two variables

- 1. Create three charts involving two quantitative variables. Slides 15, 19 & 21.
- 2. Show trend-line for the association. Show the equation and R^2 : the goodness of fit.
- **3. Describe trend (qualitative and quantitative) in words for each graph**. See slides 15 & 20.
- 4. [Optional] Describe R^2 and model in words.

Data source: www.StatLit.org/excel/pulse.xls

Approach: Data Selection

Three approaches to selecting data

- 1. Select X and Y axis data *before* inserting chart
- 2. Select just the Y-axis data *before* inserting chart
- 3. Select X and Y axis data *after* inserting chart.

Evaluation:

#1: best if X-axis data is *to the* left of Y-axis data#2: best if X-axis data is to the right of Y-axis data#3: allows the most control.

#1 Select columns (Ht & Wt) /Insert Scatter (XY) chart

INSERT	PAGE LAYO	DUT FC	DRMULAS	DATA	REVIEW	VIEW	PDF Arc	chitect	
nded Table	Illustrations	Apps for Office * Apps	Recommende Charts	ed 🔐 -	■ - ★ - ▲ - ⊡ - (s	PivotChart	Power View Reports	Sparkl	
⊨ × √	f _x I	Height	/		Insert Sca Use this cl relationsh	atter (X, Y) o hart type to s ip between s	r Bubble how the ets of val	Chart ues.	
Pulse2	Height	Weig	Scatter	s 	Click the a	arrow to see t	the differe	ent	
54	68	150		M	available and pause the pointer on				
56	69	145			the icons to see a preview in your document.				
50	69	160	Bubble						
70	72	145							
58	66	135	More Scatter C	harts					

If you select a column, Excel ignores row 1 if text.

leight	Weight	Edit Series	8 X
68	150		
69	145	Series name:	
69	160	Series Hamer	7
72	145	= 'N1'!\$D\$1	= Weight
66	135	Casica Vandaran	-
67	125	Series <u>x</u> values:	
71	170	='N1'!\$C2:\$C93	= 68 69 69 72
71	155		
71.5	164	Series <u>Y</u> values:	
62	120		- 100 145 100
65.5	120	= NI (502(5095	= 150, 145, 160,
73.5	160		
72	195	OK	Cancel
72	175		
66	120		F.0. 70 70
27 02	142	0 10 20 30 40	50 60 70

First Chart Next: Remove white space

Format X Axis

Point at horizontal axis; Press right mouse; Select "Format Axis"

Format X Axis

Format X Axis: Result

10

Format Y Axis:

Format Y Axis: Result

Insert Trend-line & Formulas

Select Chart Elements

Insert Trend-line & Formulas

Check "Trendline" (Linear is default); Select "More Options"

Select Column Chart Icon; Check Linear Equation & R²

Check "Display Equation"; Check "Display R-squared value"

Edit Headings; Match This Optional: Marker & Line Styles

Weight versus Height

Describe Slope (Qual+Quant) & Fit

On spreadsheet; not in graph

Slope (Qualitative. Use either one):

- Taller people weigh more [than shorter people]
- As height increases, weight increases (a positive association).

Slope (Quantitative. Use either one):

- As height increases by 1 inch, weight increases by 5.1 pounds.
- Weight increases by 5.1 pounds for every 1" increase in height.

Quality of the Model (Fit) using R-squared [Optional]

• 62% of variation in weight is eliminated (explained) by height.

Linear model of Weight based on Height: [Optional]

- Predicted weight = (5.1 #/inch)*Height(inches) 240#
- Mean height is 65"; Mean weight is 150#.
- Predicted weight = AveWt + (5.1#/inch)(Ht AveHt)

#2a Select Pulse1 (column A) #2b Insert XY Plot

#2c Right-mouse on the data. Select "Select Data"

#2d Select "Edit Data" #2e In Series X, select *Weight*

#2f Format Axis & Title. Add Trendline, Equation & R²

Rest Pulse vs. Weight

Describe slope (Qual+Quant) & Fit on spreadsheet; not in graph

Slope (Qualitative, Use either one):

- Heavier people have a lower rest pulse rate [than lighter people]
- As weight increases, rest pulse decreases.
- There is a negative association between rest pulse and weight.

Slope (Quantitative, Use either one):

- As weight increases by 1#, rest pulse decreases by 0.09 BPM.
- Rest pulse decreases by 0.09 bpm for every extra # of weight.

Quality of the Model (Fit) using R-squared [Optional]

• 4% of variation in rest pulse is eliminated (explained) by weight

Linear model of Rest Pulse based on Weight: [Optional]

- Predicted rest pulse = [-0.094 bpm/#]*Weight(#) + 86.5 bpm
- Predicted weight = AveWeight + [5.1#/inch][Height AveHt]

#3: Duplicate previous graph but with *Height* on X-Axis

Rest Pulse vs. Height

In Select Data, replace D with C

#3b: Describe Slope and Fit On spreadsheet; not in graph

Required: [See slide 21 for examples]

- **1.** Give a qualitative description of the trend.
- 2. Give a quantitative description of the trend.

Optional:

- **1.** Give an algebraic description of the relationship.
- 2. Give an arithmetic description of the fit. Use the value of R-squared, but do not use that phrase.
- **3.** Describe the linear model in words (no symbols)

Compare Models [Not Required]

R-squared: quality of the model.

- 62% of weight variation is explained by height
- 4.1% of Pulse1 variation explained by Weight
- 4.5% of Pulse1 variation explained by Height

Conclusions:

Height is a fair predictor ($R^2 \sim 60\%$) of weight. Height and weight are poor predictors ($R^2 < 5\%$) of rest pulse (Pulse1)