Hypothesis Tests using Excel Z.TEST Function

by

Milo Schield
Member: International Statistical Institute
US Rep: International Statistical Literacy Project Director, W. M. Keck Statistical Literacy Project

Slides and audio at: www.StatLit.org/ pdf/ZTEST-Function-Excel-2008-6up.pdf Audio/ZTEST-Function-Excel-2008.mp3

Function: ZTEST

Purpose: Calculate the likelihood of getting the sample statistic (or more extreme) by chance - assuming null hypothesis is true.

FEATURES:

Assumptions: There is a single population
Population standard deviation is known.
Nature: Excel functions automatically updated if data changes.
Three Arguments (or Inputs):

1) Range or Array: the range of sample data being tested
2) Mu-zero: Value of the null hypothesis
3) Sigma: Standard deviation of population

Run Hypothesis Tests from this data: B1:I241

Data for Q1-Q4 (B-E) is Binary: $0=$ No, $1=$ Yes. Data for Q5-Q6 (F-G) is Ordinal (discrete): 1-5. Data for Q7-Q8 (H-I) is Quantitative (ratio).

	A	B	C	D	E	F	G	H	I
1	ID	Q1	Q2	Q3	Q 4	Q5	Q6	Q 7	Q 8
2	1	0	1	0	0	3	5	67	5
3	2	0	1	0	1	4	1	62	4
4	3	0	1	0	1	3	4	60	5
5	4	0	1	1	0	4	5	60	4
6	5	0	0	1	0	3	1	71	3

Excel instructions and data at: www.StatLit.org/xls/2012Isaacson240Data.xls

A: From the Formula ribbon, Select "More Functions"

B: Select 'Statistical' and then select 'Z.Test’

Page Layout		Formulas		Data	Review	View				
(10) ? A						More Functions -	Define Name *			
						(1041	statistical		T.TEST	
f_{x}							Engineering Cube			
C	D		E	F	G			Cube	TREND	
Q2	Q3		Q4	Q5	Q6		Information ,		TRIMMEAN	
1		0	0	3	3		Compatibility *			
1		0	1	4	4	1	62		VAR.P	
1		0	1		3	4	60		VAR.S	
1		1	0	4	4	5	60		VARA	
0		1	0		3	1	71		VARPA WEIBULL.DIST	\#
0		0	0	5	5	2	76			
0		1	0		1	1	63			
0		0	0		4	3	65		Z.TEST	\checkmark

GOAL

How to conduct a one-population hypothesis-test using the Excel 2008 Z.TEST function in two situations:

1) Test of Measurements
2) Test of Proportions

Assumption: Population standard deviation is known.
Notation for the three arguments of Z.TEST function:

- Array: the range of the sample data.
- X: The value, mu, of the null hypothesis.
- Sigma: The population standard deviation.

1a Z.Test for Measures: Sigma is known (entered)

1b Z.Test for Measures: Sigma is estimated from sample

Sample standard deviation is 3.605551
Note: the p-value is still 0.315 (with $n=3$)

1 C Z.Test for Measures: Summary

The sample standard deviation can be used to estimate the population standard deviation.

There is no adjustment for this new source of variation. This modified Z.TEST is not the same as a T-TEST.

Using the sample standard deviation for small samples ($\mathrm{n}<30$) can result in p -values that smaller than those given by a T-Test. This increases false positives.

2a: Test for Proportions Sigma is entered

This analysis assumes the data are zeros and ones. In this case, the mean is always the proportions of ones.

Sample mean is 0.28
P -value is $0.1574 . .$.

2b: Test for Proportions Sigma is estimated from sample

Sample mean (p) is $0.28 . \quad \mathrm{p}^{*} \mathrm{q}=0.2016$ Sample Std Dev $=\operatorname{Sqrt}\left(p^{*} q\right)=\operatorname{Sqrt}(0.2016)=.4495$ P -value is $0.1574 . .$. .

Conclusions

Excel 2008 offers a single-population Z-Test function for measures and proportions. It does not offer a single-population T-Test.
To use this function for proportions, the outcomes must be coded as zero and one.

Excel can do this test when the proportions are coded differently from zero and one. Showing how is beyond the scope of this presentation.
Excel does allow for two-tail tests, but that is more involved. See the Excel Help system for details.

B: From "More Functions" select "Statistical"

C: From "Statistical"], select "Z.Test"

Page Layout		Formulas		Data	Review	View				
(10) ? A						More Functions -	Define Name *			
						(1041	statistical		T.TEST	
f_{x}							Engineering Cube			
C	D		E	F	G			Cube	TREND	
Q2	Q3		Q4	Q5	Q6		Information ,		TRIMMEAN	
1		0	0	3	3		Compatibility *			
1		0	1	4	4	1	62		VAR.P	
1		0	1		3	4	60		VAR.S	
1		1	0	4	4	5	60		VARA	
0		1	0		3	1	71		VARPA WEIBULL.DIST	\#
0		0	0	5	5	2	76			
0		1	0		1	1	63			
0		0	0		4	3	65		Z.TEST	\checkmark

2c Z.Test for Proportions: Summary

Z.TEST is a good hypothesis test of proportions in a single population if the data is coded as zero and one.

